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Abstract. In this paper, we consider the automatic performance tuning
of dense vector and matrix-vector operations on GPUs. Such operations
form the backbone of level 1 and level 2 routines in the Basic Linear Al-
gebra Subroutines (BLAS) library and are therefore of great importance
in many scientific applications. As examples, we develop single-precision
CUDA kernels for the euclidian norm (SNRM2) and the matrix-vector
multiplication (SGEMV). The target hardware is the most recent Nvidia
Tesla 20-series (Fermi architecture). We show that auto-tuning can be
successfully applied to achieve high performance for dense vector and
matrix-vector operations by appropriately utilizing the fine-grained par-
allelism of the GPU. Our tuned kernels display between 25-100% better
performance than the current CUBLAS v.3.2 library.
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1 Introduction

Graphical processing units (GPUs) have already become an integral part of
many high performance computing systems, since they offer dedicated parallel
hardware that can potentially accelerate the execution of many scientific ap-
plications. Currently, in order to exploit the computing potential of GPUs, the
programmer has to use either Nvidia’s Compute Unified Device Architecture
(CUDA) [1] or the Open Compute Language (OpenCL) [2]. Recent years have
shown that many applications written in these languages, which fully utilize the
hardware of the target GPU, show impressive performance speed-ups compared
to the CPU. However, developers working in these languages are also facing se-
rious challenges. Most importantly, the time and effort required to program an
optimized routine or application has also increased tremendously.

An essential prerequisite for many scientific applications is therefore the
availability of high performance numerical libraries for linear algebra on dense
matrices, such as the BLAS library [3] and the Linear Algebra Package (LA-
PACK) [4]. Several such libraries targeting Nvidia’s GPUs have emerged over
the past few years. Apart from Nvidia’s own CUBLAS, which is part of the
CUDA Toolkit [1], other prominent libraries are the open source Matrix Algebra
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on GPU and Multicore Architectures (MAGMA) library [5] and the commer-
cial CUDA GPU-accelerated linear algebra (CULA) library [6]. These provide
subsets of the functionality of BLAS/LAPACK for GPUs but are not mature in
their current versions.

Automatic performance tuning, or auto-tuning, has been used extensively
to automatically generate near-optimal numerical libraries for CPUs [7], e.g., in
the famous the ATLAS package [8]. Modern GPUs offer the same complex and
diverse architectural features as CPUs, which require nontrivial optimization
strategies that often change from one chip generation to the next.

In this paper, we will apply auto-tuning to reduce the time and effort required
to program high performance vector and matrix-vector operation kernels for
GPUs. Our goal is to design kernels based on template parameters and auto-tune
them for given problem sizes. All the kernels, which may be candidates as the
best kernel for a particular problem size, are thereby generated automatically by
the compiler as templates, and do not need to be hand-coded by the programmer.

In this work, we target Nvidia GPUs, specifically the Tesla C2050 (Fermi
architecture), which is designed from the outset for scientific computations. All
kernels are made in the CUDA programming model (Toolkit 3.2), where the
hardware is controlled by using blocks (3D objects of sizes 1024 × 1024 × 64
containing up to 1024 threads) and grids (2D objects containing up to 65535×
65535 blocks). Groups of 32 threads are called warps. We consider only the
single-precision case and present the double-precision results in another work.

This paper is organized as follows. Sect. 2 states the performance consider-
ations for our kernels. Next we describe the implementations. In Sect. 4 we de-
scribe the auto-tuning process. The experimental results are presented in Sect. 5.

2 Performance Considerations

When implementing a GPU kernel in CUDA, the path to high performance
follows mainly two directions. The first is to maximize the instructions through-
put and the second is to optimize the memory access patterns. Often one needs
to focus attention only on one of these directions, depending on whether the
maximum performance is bounded by the first or the latter.

2.1 Memory Bound Kernels

For our target GPU the single-precision peak performance is 1.03 Tflops and the
theoretical memory bandwidth is 144 GB/s. On such hardware, the kernels we
develop for vector and matrix-vector operations will consistently fall under the
memory bound category. For example, a matrix-vector multiplication requires
N2+2N memory accesses and 2N2 floating point operations. Since the resulting
arithmetic intensity is much less than the perfect balance (∼ 4.5 flops per byte)
for the target GPU [9], the corresponding kernel is inherently memory bound for
all N . This means that the arithmetic operations are well hidden by the latency
of memory accesses, and we will concentrate on optimizing the memory access
pattern in order to reach the maximum effective memory bandwidth of the GPU.
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2.2 Coalesced Memory Access

In general, two requirements must be fulfilled for a kernel’s memory access to
be efficient. First, the access must be contiguous so that consecutive threads
within a warp (32 threads) always read contiguous memory locations. Second,
the memory must be properly aligned so that the first data element accessed
by any warp is always aligned on 128 bytes segments. This allows the kernel
to read 32 memory locations in parallel as a single 128 byte memory access, a
so-called coalesced access. If by design an algorithm is required to read data in a
non-coalesced fashion, one can use the shared memory available on the graphics
card to circumvent such access patterns. Shared memory should also be used if
data is to be re-used or communicated between threads within a block.

2.3 Registers

A key performance parameter in CUDA is the number of registers used per
thread. The fewer registers a kernel uses, the more threads and blocks are likely
to reside on a multiprocessor, which can lead to higher occupancy (the ratio of
the resident warps on the hardware to the maximum possible number of resident
warps). A large number of warps is often required to hide the memory access
latencies well. However, since registers represents the major part of the per-
multiprocessor memory and have the shortest access latency, it is advantageous
to implement high-performance kernels for exhaustive register usage, if possible.

2.4 Loop Unrolling

It is important to design memory bound kernels with enough fine-grained thread-
level parallelism (TLP) to allow for the occupancy to be high and latencies well
hidden. Alternatively, having many independent instructions, i.e. high instruc-
tion level parallelism (ILP), can also hide the latencies [10]. In our kernels we
allow the compiler to unroll inner loops (using the keyword #pragma unroll),
which will increase the instruction level parallelism of the kernels and facilitate
some degree of latency hiding. Unfortunately, this may also increase the regis-
ter usage which may lower the occupancy and subsequently performance. The
key is to find the best compromise between ILP, TLP, the number of threads
per block, the register usage, and the shared memory usage to achieve the best
performance of a given kernel. To this end, we will employ auto-tuning.

3 Vector and Matrix-Vector Operations on Fermi GPUs

The Tesla C2050 Fermi architecture provides 14 multiprocessors of 32 cores each
that can execute threads in parallel. In CUDA, we utilize this parallel hardware
by distributing the work of an operation to the individual threads via a grid
of blocks. During execution, the blocks are assigned to multiprocessors, which
further split each block into sets of 32 threads known as warps, that execute the
same instructions on the multiprocessor synchronously.
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Fig. 1. Coalesced access pattern for the element-wise operation on a vector and the
subsequent parallel reduction operation per block in shared memory.

3.1 Operations on a Vector

In Fig. 1, we illustrate the two main cases of operations on vectors, where the
first corresponds to merely reading and writing a vector as required for an oper-
ation on the individual elements of the vector, e.g., a vector scale or vector add
(SAXPY), and the second corresponds to the subsequent reduction operation in
shared memory required for, e.g., a sum or an Euclidian norm (SNRM2).

In the first case, the operation is embarrassingly parallel and the memory
access pattern for reading the vector in a CUDA kernel is made fully coalesced
by having a block size given by a multiple of the warp size (assuming the vector
is stored at an aligned address). Each thread can be assigned to handle one
or more elements. Whether the values should be stored in shared memory for
optimal usage depends on the operation to be performed on its elements.

In the second case, the illustrated access pattern for the reduction is de-
signed to avoid shared memory bank conflicts [11]. It requires log2(BLOCKSIZE)
iterations, where the last 5 are executed synchronously per warp. Although, the
reduction operation suggested here suffers from performance inhibiters like the
use of explicit synchronizations and leaving threads idle in the last 5 iterations,
this technique is currently the optimal for reducing a result on Fermi GPUs.

3.2 Operations on a Matrix

An important access pattern for operations on a matrix is when each thread
transverses elements of a given row in order to operate on the individual elements
of the row or to reduce a result or part of a result. E.g., the typical parallel
implementation of a matrix-vector multiplication (SGEMV), where each thread
performs a dot product between one row of A and x to produce one element of
the result y. In the common case, where the matrix is stored in column major
memory layout, this access pattern can be achieved by dividing the matrix into
slices of BLOCKSIZE rows and launching a block for each of them. Each thread
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Fig. 2. Access pattern for the row-wise reading of matrices having column major mem-
ory layout. Left; the misaligned case of arbitrary number of rows. Right; the coalesced
case occurring when the number of rows is padded to a multiple of the warp size.

might only take care of part of a row, which is accomplished by dividing the
matrix into tiles instead of slices and using 2D grid of blocks.

As illustrated in the left part of Fig. 2, the described memory access pattern
for an arbitrary m×n matrix is contiguous but misaligned for each warp (except
for every 32nd column). In single precision, each warp of 32 threads will request
32×4 = 128 bytes of memory per memory access in the kernel. On a Fermi GPU
with compute capability 2.0, the misalignment breaks the memory access of the
required 128 bytes per warp into two aligned 128 byte segment transactions [12].

As illustrated in the right part of Fig. 2, for the matrix memory accesses to
be coalesced, both the number of threads per block and the height of the matrix
must be a multiple of the warp size. In particular, this means that a matrix
whose height is not a multiple of the warp size will be accessed more efficiently
if it is actually allocated with a height rounded up to the closest multiple of this
size and its columns padded accordingly.

3.3 Operations on a Transposed Matrix

In BLAS, all level 2 routines for matrix-vector multiplication and linear solvers
are available for ordinary as well as transposed matrices (by specifying the TRANS
argument to ’T’). The operations on transposed matrices can be advantageously
implemented without explicit transpositions. Moreover, one can view the oper-
ations on transposed matrices stored in column major layout as equivalent to
operations on ordinary matrices stored in row major layout.

In Fig. 3, we illustrate an access pattern for an operation that requires
the row-wise transversal of matrix elements in row major memory layout, e.g.,
y = ATx (SGEMV with ’T’). The threads in a block are distributed along
the rows of the matrix in order for the memory access to be contiguous for each
warp. For the case of arbitrary number of columns n (left part of the figure) the
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Fig. 3. Access pattern for the row-wise reading of matrices having row major memory
layout. Left; the misaligned case of arbitrary number of columns. Right; the coalesced
case occurring when the number of columns is padded to a multiple of the warp size.

access will be misaligned. This can only be avoided if the width of the matrix is
padded to a multiple of the warp size (right part of the figure).

In the access pattern shown, we designate one block per row and the threads
have to work together if a reduction result is required, i.e., the row-wise transver-
sal might be followed by a reduction in shared memory as discussed above. We
allow each thread to take care of more elements on the same row. In addition,
we allow each block to take care of more than one row by dividing the matrix
into slices of a given number of rows and launching a block for each of them.

4 Auto-tuning

In order to configure the vector and matrix-vector kernels with optimal pa-
rameters for the targeted GPU we will use auto-tuning. We have implemented
an auto-tuning framework that can automate the performance tuning process
by running a large set of empirical benchmarks. Our search strategy is to rely
on heuristics to evaluate only a sub-set of the possible configurations based on
knowledge we have about the GPU hardware and find the optimal among them.

4.1 Using C++ Templates

GPU auto-tuners can be constructed in a variety of ways to test different kernel
implementations, ranging from simply calling the kernel with different function
arguments to run-time code generation of kernel candidates [13]. In this work,
we implement the auto-tuner based on C++ function templates. The goal is to
represent all tuning parameters as template values, which are then evaluated at
compile time. This allows inner loops over these parameters to be completely
unrolled and conditionals to be evaluated by the compiler at compile time. We
are also able to set launch bounds depending on the tuning parameters using
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the CUDA keyword launch bounds . All that is required is the declaration of
the kernel as a template via template <..> and a large switch statement [11].

4.2 Tuning Parameters

The vector and matrix-vector operations implemented in this work incorporate
three tuning parameters, which are built into the design of the kernels.

Parameter 1: Block Size Commonly, the most important tuning parameter
in the CUDA model is the number of threads per block. Since the smallest work
entity to be scheduled and executed is a warp of 32 threads, we know that having
BLOCKSIZE a multiple of 32 is the best choice for a high-performance kernel. We
also know that to reach an occupancy of 1, at least 192 threads per block are
needed [14], while to use the maximum 63 registers per thread at most 64 threads
per block are allowed [14]. This trade-off leads us to search the parameter space

BLOCKSIZE ∈ {32, 64, 96, 128, 160, 192, 224, 256}, (1)

for the optimal value (experiments confirm this to be appropriate for the C2050).

Parameter 2: Work Size per Thread Another tuning parameter adresses
the performance trade-off between launching many threads in order to utilize the
fine-grained parallelism of the GPU and having each thread perform a reasonable
amount of work before it retires. Empirically, we found that the parameter space

WORKSIZE ∈ {1, 2, 3, 4, 5, 6, 7, 8} × BLOCKSIZE, (2)

for the number of elements handled per thread, is adequate for the C2050.

Parameter 3: Unroll Level A final tuning parameter built into the design of
our kernels is related to the CUDA compiler’s technique for unrolling inner loops,
where a particular unroll level x can be specified by #pragma unroll x. Using
a high level gives the smallest loop counter overhead and fewer instructions but
it also requires more registers per thread. We found that the unroll levels

UNROLL LEVEL ∈ {FULL, 2, 3, 4, 5, 6, 7, 8}, (3)

can lead to different performances and this space is therefore searched.
We note that this amounts to total of 8× 8× 8 = 512 configurations of our

vector and matrix-vector kernels to be auto-tuned for a given problem size.

5 Results

Our test platform is a Nvidia Tesla C2050 card having 3 GB device memory on a
host with a quad-core Intel® Core™i7 CPU operating at 2.80 GHz. The GPU’s
peak performance is 1.03 Gflops and the theoretical bandwidth is 144 GB/s. The
error correction code (ECC) is on. Running bandwidthTest() from the CUDA
Toolkit 3.2 SDK gives 84.4 GB/s. Note that the performance timings shown do
not include transfer of data between host and GPU unless stated otherwise.
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5.1 Euclidian Norm (SNRM2) on Fermi GPU

We show the result from auto-tuning the SNRM2 kernel in Fig. 4 for sizes up to
1000000. The top panel displays the selected best kernel designated by color and
the bottom panel the corresponding performance achieved in Gflops. Also the
names of the best kernels are listed in the middle in a form where the name of the
operation is appended by “b1×{BLOCKSIZE} w{UNROLL LEVEL}×{WORKSIZE}”.

In Fig. 5, we show the average performance of the auto-tuned SNRM2 kernel
over a span of sizes of up to 107 elements. We compare the achieved results with
the similar performance measurement for the SNRM2 kernel from CUBLAS v3.2
library. Note that the SNRM2 function in CUBLAS v3.2 gives the result on the
host while our SNRM2 function by default gives the result on the GPU. For the
sake of comparison, we make a version of our kernel that also copies the result
to the host. As shown, the difference in performance because of this is relatively
small and becomes smaller for larger sizes of n. On average, our auto-tuned
SNRM2 kernel performs > 30% better than the current CUBLAS v3.2 kernel.

5.2 Matrix-Vector Multiplication (SGEMV) on Fermi GPU

We show the result of auto-tuning our SGEMV kernel in Fig. 6, where we have
considered matrix sizes up to 10000 rows and 10000 columns on an 8× 8 tuning
grid. The auto-tuner and performance results shown are obtained as averages
from 25 samples within each tuning grid tile. A total of 12 different best kernels,
designated by a unique color, are selected. The names of the best kernels have
the extension “b{BLOCKSIZE}×1 w{UNROLL LEVEL}×{WORKSIZE}”.
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Fig. 7. Performance of the auto-tuned SGEMV kernel (with TRANS = ’N’ and ’T’) on
a Nvidia Tesla C2050 card. The curves show the average performance from ten calls.

In Fig. 7, we show the achieved performance of the auto-tuned SGEMV
kernel in the cases of ordinary (y = Ax) and transposed (y = ATx) square
matrix-vector multiplication and for matrices with and without padding. We see
a significant improvement in comparison with the corresponding kernel in the
current CUBLAS v3.2 library (up to ∼ 100% in the transposed case).
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We also compare with the most recent MAGMA library [5] and see some im-
provement in the ordinary matrix-vector multiplication case. In the transposed
matrix-multiplication case, our auto-tuned kernel confirms that MAGMA’s ker-
nel is already highly optimized for square matrices of the sizes considered here.

In addition, the performance results show that the padding of matrices is not
necessary in order to achieve high performance on the C2050 card. In our kernel
the increase in performance from padding to a multiple of the warp size is only
a few percent. We credit this to the L1 and L2 caches available on Fermi GPUs.

6 Conclusion

In this work, we have implemented vector and matrix-vector operations as high-
performance GPU kernels designed for auto-tuning. We used auto-tuning of the
kernels in order to select the optimal kernel parameters on the Tesla C2050 card
(Fermi GPU). The auto-tuning consisted of a heuristic search of a tuning space
containing key hardware dependent parameters that sets the number of threads
per block, the work per thread, and the unroll level of the inner-most loop.

We have illustrated the approach for the Level 1 BLAS routines, with the ex-
ample of the Euclidian norm, and for the Level 2 BLAS routines in the case of the
matrix-vector product operations. We achieve significantly better performance
compared to the CUBLAS v3.2 library. Two other basic Level 2 operations, the
rank-1 and rank-2 updates and the triangular solve, are left as future work.
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