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Abstract. In this paper, we develop a high-performance GPU kernel
for one of the most popular dense linear algebra operations, the matrix-
vector multiplication. The target hardware is the most recent Nvidia
Tesla 20-series (Fermi architecture), which is designed from the ground
up for scientific computing. We show that it is essentially a matter of
fully utilizing the fine-grained parallelism of the many-core GPU in order
to achieve high-performance for dense matrix-vector multiplication. We
show that auto-tuning can be successfully employed to the GPU kernel
so that it performs well for all matrix shapes and sizes.
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1 Introduction

The single-instruction-multiple-data (SIMD) parallel capabilities of Nvidia GPUs
have been made accessible to scientists and developers through the CUDA pro-
gramming model [1]. The most recent Fermi GPU architecture features up to 16
streaming multiprocessors (SM) having 32 single-precision cores each. Execution
on this potent parallel hardware is controlled through CUDA keywords; a block
is a 3D structure of up to 1024 threads and a grid is a 2D structure of blocks.

For many programmers, the key to good performance of numerical scientific
applications is still linked to the availability of high-performance libraries for
the most common dense linear algebra operations. Several such libraries have
recently become available for GPUs, e.g., Nvidia’s CUBLAS [2] and the open
source MAGMA library [3]. In the case of matrix-vector multiplication, however,
these libraries are currently not satisfactory and suffer from low utilization of
the GPU hardware in particular for rectangular shaped problems [4].

In this paper, we seek to remedy this lack of performance for matrix-vector
multiplication for all problem shapes and sizes. We will contribute to the present
state of the art of GPU matrix-vector multiplication kernels by developing an
auto-tunable rigorously parallel and versatile kernel, where threads can work to-
gether, not only within a block, but also between blocks. This provides the kernel
with an additional layer of parallelism - at the grid level - which is essential in
order to achieve high-performance for rectangular matrix-vector multiplication.
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The motivation from a parallel computing point of view is to maintain a good
load balancing across the GPUs resources in all situations.

2 Related Work

Several previous works on matrix-vector multiplication kernels for GPUs exists
of which we will mention some of the most recent. In 2008, Fujimoto [5] de-
scribed a matrix-vector kernel written in CUDA that was specifically tuned for
the Nvidia’s GeForce 8800GTX graphics card. The performance he achieved was
significantly better than the CUBLAS v1.1 library available at that time, reach-
ing a maximum performance of 36 Gflops in single precision for a GPU with a
theoretical memory bandwidth of 86 GB/s. The main design motivation for his
kernel was an attempt to maximize data reuse of the x vector in combination
with tiling of the matrix A. This led to important optimizations of the naive
matrix-vector implementation such as a two-dimensional block structure and
simultaneous reduction operations, which are also adopted in this work.

Later in 2009, Tomov and Dongarra et al. developed a fast matrix-vector
kernel to be one of the key ingredients in their MAGMA library [6], which
is a dense linear algebra package for heterogeneous CPU-GPU systems with
the same functionality as the legacy LAPACK library [7]. Several generic op-
timization techniques were introduced to improve on the matrix-vector kernel
performance, including pointer redirection [8] and auto-tuning [9]. For square
matrices of sizes that are divisible by 32, they report a performance of up to
66 Gflops in single precision on a graphics card that has a theoretical mem-
ory bandwidth of 141 GB/s [6]. This result is a significant improvement over
the CUBLAS v.2.3 that was available in 2009. They also presented a kernel
for transposed matrix-vector multiplication, which like Fujimoto’s kernel, allows
groups of threads within a block to work together followed by a required reduc-
tion operation. The maximum performance for the transposed version was 43
Gflops, which was more than twice of what CUBLAS v2.3 could deliver.

3 Matrix-vector multiplication kernels

In this section, we describe the matrix-vector multiplication kernels we have
developed for the C2050 card. To achieve high-performance for all shapes of
matrix A we implement four different kernels to fit the four cases; very tall, tall
and skinny, close to square, and wide and fat. The cases and the names of the
kernels are illustrated in Fig. 1. We also combine the four kernels into a versatile
generic kernel. We consider only the case of column major memory layout. In
the next section we introduce auto-tuning of the versatile kernel in order to
automatically select the best performing of the four kernels at runtime.

3.1 One thread per row

The typical implementation of a matrix-vector multiplication kernel, as illus-
trated in Fig. 2 (a), is where each thread performs a dot product between one
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Fig. 1. Left; Four matrix-vector multiplication kernels designed to perform well at
different shapes m×n of A. Middle; Tuning mesh. Right; Best kernel in practice. The
dashed line indicates the minimum 21504 rows needed in A for full occupancy of the
Nvidia Tesla C2050 card in a one-thread-per-row kernel. Note the logarithmic axes.

row of A and x to produce one element of the result y. The threads are then
grouped in 1D blocks along the columns of A. For a given size of A, the only
parameter required is the number of threads per block, which we will denote by
BLOCKSIZE. The size of the grid specified when launching the kernel in CUDA is
determined by the BLOCKSIZE parameter. Dividing the m rows of A into slices
of size BLOCKSIZE, with the last slice possibly containing less than BLOCKSIZE

rows, we have a one dimensional grid of size

GRIDSIZE m = (m + BLOCKSIZE− 1)/BLOCKSIZE.

Using a grid of this size requires an if conditional inside the kernel to make sure
the last block does not access memory outside the m rows of A. In Fig. 2 (a)
the kernel is shown for a GRIDSIZE m of 4 as indicated with the red 4× 1 mesh.

Since all threads need the same n values of x for their dot products it is best
to read these into shared memory once per block and then let threads access them
from there. This allows for maximum reuse of the data. We therefore divide x
into chunks of BLOCKSIZE and set up a loop to let the threads collaborate in
reading chunks in a coalesced fashion into a shared memory once per block. It
requires the allocation of a shared memory array of size BLOCKSIZE for each
block. The usage of shared memory is illustrated by red-dotted boxes in Fig. 2.

The one-thread-per-row matrix-vector multiplication kernel is appropriate as
a high-performance kernel on the C2050 card for tall and skinny A only. This is
because the Fermi GPU with 14 SMs supports 1536 active threads per SM [10],
so that full occupancy requires 1536×14 = 21504 rows in A. If m is less than this,
and A is not skinny, then we are not utilizing the hardware to the maximum.
SMs might be idle or running at low occupancy during kernel execution, while
the running threads might do a lot of work each. If A is skinny, e.g., n < 100,
then dispite the low utilization, the individual threads complete fast enough for
this kernel to be the best implementation. In Fig. 1, we indicate the dimensions
of A for which the one-thread-per-row kernel is designed to perform well.
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Fig. 2. Schematic illustrations of the matrix-vector multiplications kernels imple-
mented in this work. The transversal of A can be conveniently separated into distinct
device kernels 1 − 4 as indicated by color in the figures. The red lines show the divi-
sion of the elements of A into work-chunks and the CUDA keywords blockIdx.x and
blockIdx.y show how to map these onto a grid of blocks. Vector x is read to shared
memory for data re-use indicated by the red-dotted boxes. BLOCKSIZE, WORKSIZE m and
WORKSIZE n are tuning parameters. Memory storage is assumed to be column major.
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3.2 Several threads per row

The low utilization of hardware for the one-thread-per-row kernel when A is
not tall and skinny is mainly due to the lack of grid-level parallelism in the
kernel design. A Fermi GPU can support up to 8 resident blocks per SM, giving
up to 112 blocks for full utilization, which is out of reach for shorter A using a
reasonable BLOCKSIZE and a 1D grid. The utilization can be improved by allowing
several threads per row and thereby introducing a 2D grid for the kernel.

As illustrated in Fig. 2 (b), each thread of each block in this kernel then
does part of a row only and adds its partial result to the results of other threads
from other blocks in order to produce an element of y. We introduce a new
parameter WORKSIZE n to designate how many elements of a row each thread
should handle. For simplicity in our implementation this parameter represents
multiples of the parameter BLOCKSIZE. The values of x are still read into shared
memory in chunks of size BLOCKSIZE only once per block and then accessed from
here to facilitate reuse of data. We use the CUDA function atomicAdd() [1] for
the inter-block reduction of partial results in order to avoid race conditions.

The several-threads-per-row kernel is launched with a 2D grid of dimension
(GRIDSIZE m, GRIDSIZE n), where

GRIDSIZE m = (m + BLOCKSIZE− 1)/BLOCKSIZE,

GRIDSIZE n = (n + BLOCKSIZE ∗ WORKSIZE n− 1)/(BLOCKSIZE ∗ WORKSIZE n),

and requires an if conditional in the kernel to make sure the bottom blocks do
not access memory outside the m rows of A. Since only the right most column of
blocks require an if conditional to stay within the columns n of A, it is convenient
to design this kernel as two device kernels, 1 and 2, that takes care of the left
fully tiled part of A and the right rest of A, respectively. Device kernels in
CUDA work similarly to inline functions in C++. Threads in the fully tiled part
of A add up results for a fixed number of elements BLOCKSIZE ∗ WORKSIZE n.
Threads in the right rest part of A possibly do less. In Fig. 2 (b) the case of
WORKSIZE n = 3 and grid dimension (4, 2) is shown.

As is illustrated in Fig. 1, the several-threads-per-row design performs well
for most shapes of A, i.e., those that are close to square or wide. The most
significant performance limitation for this kernel is the use of the atomicAdd()

function, which reads a 32-bit word in global memory, adds a number to it,
and writes the result back to the same address. No other thread can access the
address until the operation is complete, so until then those other threads working
the same row might be stalled. As a rule of thumb, we find that if A has less than
the 21504 rows needed for full occupancy of all SMs on the C2050 card and more
than n > 100 columns, the gain from an increase in grid-level parallelism and
hardware utilization significantly outweighs the loss from having stalled threads.

3.3 Several rows per thread

If A has more than 21504 rows it becomes less beneficial to have more threads
per row since all SMs can have the supported 8 active blocks utilized with one-
thread-per-row if we use less than 192 threads per block. In fact, for cases where
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A is very tall, e.g., having hundreds of thousands of rows, it is a major advantage
to let each thread handle several rows. The performance gain from doing this
is mainly related to the decrease in shared memory accesses for elements of x
when each thread handles more rows.

We have implemented a several-rows-per-thread kernel which is illustrated in
Fig. 2 (c). In addition to the parameter BLOCKSIZE we introduce the parameter
WORKSIZE n to designate how many rows each thread should handle. The kernel
is launched with a 1D grid of dimension

GRIDSIZE m = (m + BLOCKSIZE ∗ WORKSIZE m− 1)/(BLOCKSIZE ∗ WORKSIZE m),

and only the bottom block requires an if conditional to stay within the rows m
of A. The other blocks assigned to the top fully tiled part of A always work on
the same fixed number of rows. Again, it is convenient to design this kernel as
two device kernels, 1 and 3 (see figure), that takes care of the top fully tiled part
of A and the bottom rest of A, respectively.

3.4 Several threads, several columns

Until now all kernels were designed for 1D blocks having each thread assigned
to a different row. However, for matrix-vector multiplication with matrices A
that have less than BLOCKSIZE rows this can give rise to a large percentage of
idle threads. For matrices with very wide and fat shapes, the performance will
significantly decrease when some threads are not working. In order to avoid this
it is necessary to use either 2D blocks or index the threads of the 1D block
differently, e.g., as illustrated in Fig. 2 (e). The new indexing distributes the
threads of a block along the column-wise layout of A instead of assigning m
of them to distinct rows and leaving the rest idle. As long as there are threads
within a block to fill an entire additional column of A, these threads will be put
to work.

The design of this kernel makes it possible to have several-threads-per-row
both within a block and between different blocks and all of them are required to
add up their partial results to obtain an element of y. This can have a consider-
able cost on performance, which is also seen from the results in Sect. 4.1, but still
makes up the best design for wide and fat shapes of A. In our implementation,
we again use the CUDA function atomicAdd() for the reduction of partial re-
sults. Alternatively, one could apply shared memory reduction techniques for the
intra-block reduction, e.g., as presented by Harris et. al. [11], but such methods
complicates the implementation and does not result in a significant performance
boost compared to using atomicAdd() on the C2050 card. As indicated in Fig. 1,
this kernel is performing well for wide matrices having less than ∼ 50 rows.

3.5 Several threads, several rows

In order to have high-performance for all matrix shapes we combine the designs
of the four above kernels into a single versatile kernel. The implementation is
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Fig. 3. Result of the auto-tuning process indicating the best values of the tuning pa-
rameter BLOCKSIZE, WORKSIZE m, and WORKSIZE n at different shapes m × n of A. See
the respective kernel for which the parameters are selected in Fig. 1.

illustrated in Fig. 2 (d) and requires three parameters BLOCKSIZE, WORKSIZE m

and WORKSIZE n. It uses a 2D grid of dimension (GRIDSIZE m, GRIDSIZE n), where

GRIDSIZE m = (m + BLOCKSIZE ∗ WORKSIZE m− 1)/(BLOCKSIZE ∗ WORKSIZE m),

GRIDSIZE n = (n + BLOCKSIZE ∗ WORKSIZE n− 1)/(BLOCKSIZE ∗ WORKSIZE n),

and includes as special cases all the previous three kernels.

4 Results

In this section, we present various performance results for the high-performance
GPU matrix-vector multiplication kernels developed in this paper. All kernels
are implemented for single-precision arithmetic and auto-tuned for optimal per-
formance. We use the Nvidia Tesla C2050 graphics card having 3 GB device
memory on a host with a quad-core Intel(R) Core(TM) i7 CPU operating at
2.80 GHz. The GPU has 448 cuda cores with a peak performance of 1.03 GFlops
and a theoretical bandwidth peak of 144 GB/s (ECC is on). Note that the per-
formance timings do not include transfer of data between host and GPU.

4.1 Auto-tuner results

We run the auto-tuner on a 24× 24 logarithmic tuning mesh (see Fig. 1) to find
the best matrix-vector multiplication kernel (from 3 implementations) and the
best parameters from a heuristic search of the parameter space

BLOCKSIZE ∈ {32, 64, 96, 128, 160, 192, 224, 256},
WORKSIZE m, WORKSIZE n ∈ {1, 2, 3, 4, 5, 6, 7, 8},

corresponding to 3×8×82 = 1536 kernels for each particular size of A. In order
to increase the quality of the kernel selection for this very coarse tuning mesh,
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Fig. 4. Performance of matrix-vector multiplication (SGEMV) on a Nvidia Tesla C2050
graphics card for matrices having different shapes (tall, square, and wide) as a function
of memory footprint. The curves are obtained by calling cublasSgemv in the CUBLAS
v3.2 library (left) and our auto-tuned kernel (right) and show the average performance
from ten subsequent calls. Notice the logarithmic scale of the memory footprint axis.

the auto-tuner is set up to measure performance on a finer 3× 3 logarithmically
spaced grid of points within each mesh tile and take the average.

In the right part of Fig. 1 we show the auto-tuner result for finding the best
kernel out of the four kernels described in Sect. 3. The black area represents the
sizes of A that do not fit into memory on the graphics card. We see that the
region of best performance for each kernel corresponds reasonably well to their
target region, as illustrated in the left part of the figure.

Fig. 3 shows the best values of the tuning parameters BLOCKSIZE, WORKSIZE m,
and WORKSIZE n, which was determined by the auto-tuner when selecting the
best kernel. For all three parameters, we see that the full range of allowed values
are used. The best parameters differ distinctively between kernels, however, with
no clear pattern otherwise. These results can be seen as a strong advocation for
using auto-tuning for matrix-vector multiplication kernels on GPUs.

4.2 Performance results

In Fig. 4 we plot the performance of our matrix-vector multiplication kernel for
different shapes of matrices as a function of memory footprint. The shapes are
denoted as tall, square and wide, and given by sizes 100N ×N , 10N × 10N , and
N ×100N , respectively, for N = 10, 20, 30, . . . . Regardless of the shape of A, we
observe that the curves show generally the same behavior for our kernel, which
is a significant improvement over the similar performance plots for the SGEMV
function of the CUBLAS v.3.2 library [2] shown on the left.

We note that there are several drops in the tall shape performance in the
region starting around 3× 104 MB and ending at 2× 105 MB, which is linked to
the coarse granularity of the tuning mesh. In this region, the tuning parameters
change rapidly (see Fig. 3). Since the several-rows-per-thread kernel, which is
selected as the best in this region, is quite sensitive to these parameter changes,
a more fine-grained mesh is needed for the kernel to be optimally auto-tuned.
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Fig. 5. Performance of matrix-vector multiplication (SGEMV) in color coded form over
the 24 × 24 logarithmic auto-tuning mesh of matrix sizes. Dark blue represents low
performance, while dark red represent high performance. The figures compare results
from the current versions of the most commonly used numerical libraries for GPUs,
the Nvidia CUBLAS v3.2 and the MAGMA v1.0.0-rc5, to our auto-tuned kernel.

4.3 Performance comparison

In Fig. 5, we present the performance of our matrix-vector multiplication kernel
in color coded form over the 24 × 24 logarithmic auto-tuning mesh of matrix
sizes. We also show the corresponding performance of the SGEMV routine from
the current versions of the most commonly used numerical libraries for GPUs,
the CUBLAS v3.2 [2] and the MAGMA v1.0.0-rc5 [3]. The performance mea-
surements displayed correspond to averages over 3 × 3 logarithmically spaced
sample points within each mesh tile. We would like to stress that the matrices
in these numerical tests are not padded in any way to increase performance.

The figures show that both the CUBLAS v3.2 and MAGMA v1.0.0-rc5
matrix-vector multiplication kernels are performing well only above the dashed
line (21504 rows), which suggests that they are designed as one-thread-per-row
kernels. In particular, the performance for wide matrices, which is problematic for
this type of kernel, does not meet the hardware’s potential for high-performance.
Moreover, the kernels are not auto-tuned, resulting in the several features in the
coloring, that indicate lack of performance for certain sizes of matrices.

We see that the figure for our kernel shows good performance for all shapes
of matrices, depending primarily on the number of elements in A. The figure
appears to be almost skew-symmetric, which is a sign of close to optimal shape-
dependence behavior. For very wide and fat matrices, the performance is not as
good as for comparable tall and skinny matrices. This is related to the necessary
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use of the CUDA function atomicAdd() for the reduction of partial results to
the same output address in the several-threads-several-cols kernel.

5 Conclusion

In this paper, we have developed a high-performance matrix-vector multiplica-
tion kernel in the CUDA programming model for the latest generation of Nvidia’s
high-performance computing GPUs. As a starting point, we designed four dif-
ferent matrix-vector multiplication kernels, each aimed for optimal utilization
of the fine-grained parallelism of the GPU hardware, but for different matrix
shapes. The four kernels were then combined into a single versatile kernel.

We used auto-tuning of the kernel in order to achieve a high-performance
for all problem sizes. The auto-tuning consisted of a heuristic search of a tuning
space containing the kernel design and key hardware dependent arguments that
sets the number of threads per block, the number of rows per thread, and the
number of columns per tread, respectively. The proposed auto-tuning procedure
then required a total of 1536 different kernels to be compiled and benchmarked
on a 24× 24 logarithmic tuning mesh over sizes of the matrix A.

The performance of the matrix-vector multiplication kernel was measured
in a series of numerical experiments for different problem sizes. The obtained
performance increases as the size of A increases, until the matrix-vector mul-
tiplication kernel can fully utilize the many-core hardware of the GPU. There
was very little dependence on the shape of the matrix in the performance of
our kernel, which is a significant improvement compared to the current GPU
libraries for dense linear algebra, CUBLAS v3.2 and MAGMA v1.0.0-rc5, which
only reach the GPU hardware’s potential for tall matrices.
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