
Development of Desktop Computing
Applications and Engineering Tools on GPUs
Hans Henrik B. Sørensen, Stefan L. Glimberg, Toke J. Hansen, Jeppe R. Frisvad, Allan P. Engsig-Karup {†: gpulab@imm.dtu.dk}

Indtroduction and Background
GPULab - A competence center and laboratory for research and collaboration within academia and partners in industry has been established in 2008 at section for Scientific
Computing, DTU informatics, Technical University of Denmark. In GPULab we focus on the utilization of Graphics Processing Units (GPUs) for high-performance computing
applications and software tools in science and engineering, inverse problems, visualization, imaging, dynamic optimization. The goals are to contribute to the development of
new state-of-the-art mathematical models and algorithms for maximum throughout performance, improved performance profiling tools and assimilation of results to academic
and industrial partners in our network. Our approaches calls for multi-disciplinary skills and understanding of hardware, software development, profiling tools and tuning
techniques, analytical methods for analysis and development of new approaches, together with expert knowledge in specific application areas within science and engineering.
We anticipate that our research in a near future will bring new algorithms and insight in engineering and science applications targeting practical engineering problems.

Fig. 1: Snapshot of free surface for an instant of time. Left: Wave focussing due to depth refraction. Right: Wave diffraction caused by wave-structure
interaction.

Per Christian Hansen!
Jan Hesthaven!
Bernd Dammann!
John Bagterp Jørgensen!

Allan Engsig-Karup!
Jeppe Frisvad!
Boyuan Lazarov
Hans Henrik Brandenborg Sørensen!

Stefan Lemvig Glimberg!
Rikhardur Einarson!
Toke Jansen Hansen!
Morten Gorm Madsen!

Fig. 2: Simulation comparison of the multigrid and the Jacobi methods. The number of iterations was chosen so that the total time consumption
are the same for both methods. Left: Details along with the rotational motions, are much more apparent with the multigrid method. Right: The
divergence field at the center slice. Medium gray equals zero divergence. Only the Jacobi method suffers from low-frequency errors.

Smoke Simulation in Fire Engineering using GPUs
A Computational Fluid Dynamics (CFD) solver, for smoke propagation, using the
parallel architecture of graphics hardware has been developed. The purpose is to
investigate the possibilities of fast approximation techniques in combination with
the powers of GPUs, and test usability from an engineering point of view. CFD
tools for smoke propagation help engineers analyze security risks at fire scenes.
Based on several case studies, our solver has shown to be an efficient tool for
interactive smoke simulation. Even at high resolutions the solver performs at
interactive rates on a single GPU. The parallel architecture of the GPU makes it an
excellent computational unit for compute intensive tasks like CFD.

Fast Simulation of Unsteady Nonlinear Water Waves
For analysis and prediction of unsteady dispersive nonlinear water waves over
uneven bottoms from shallow to deep water and for wave-structure interactions in
ocean and offshore engineering it is important to have fast simulations tools. In a
current project, we focus on designing new or improved algorithms that are
massively parallel and can achieve a high effective arithmetic throughput in
simulations based on state-of-the-art algorithms in computational fluid dynamics
problems for ocean and offshore engineering. This will enable opportunity for
accurate and fast analysis and prediction of flow evolution and kinematics, e.g. in
large areas, over long times and for doing fast parameter studies based on the
efficient solution of many problems.

Kernel based searchlight Heuristic for realtime fMRI
A novel searchlight heuristic that yields similar results to resampling based
searchlight approaches has been developed. The reduced computational
complexity of the suggested heuristic enables searchlight approaches to be
applied in a real-time setting preventing the need for functional localizer scans.
The suggested heuristic also enables the use of dynamic searchlight procedures
capable of adapting to changes in the subjects strategy, performance or brain
state during the experiment. Finally, the absence of data dependencies between
distinct searchlight regions and the low memory footprint, makes the heuristic
highly suitable for modern multi core architectures.

Fig. 3: Compares the performance of the heuristic on respectively a GPU and CPU. The single threaded CPU implementation can handle a
time window of ≈ 50 samples, before the update reaches the bound defined by the repetition time, whereas the GPU is ≈ 45 times faster.

!"#$%&'%()*+,-% !"#$%&'%()*+,-%

GPU FFT and Convolution
The GPU is extremely efficient at computing the Discrete Fourier Transform.
Because of its roots in graphics, it is particularly well-suited for working with 4-
vectors. This means that two DFTs in parallel is a very good idea (two complex
numbers in each 4-vector). We implement two parallel FFTs in GLSL using the
classic Cooley-Tukey algorithm, which is now available in the CUDA library called
CUFFT. Using the GPU FFT implementation, we can easily implement convolution
on the GPU. The two parallel FFTs become a great advantage since we can
compute the FFT of corresponding color bands in parallel and multiply them
immediately after. We need nine 2D FFTs to convolve two RGB images.

Fig. 4: Left: we compute the 2D FFT of an 512x512 RGB image in 2 milliseconds using only a laptop GPU (NVIDIA Quadro FX 1600M). Right:
illustrates how we can use convolution to reduce the high-frequency noise which often appears in images computed using classic Monte Carlo
path tracin. Convolution of two 512x512 RGB images, which takes only 5.5 milliseconds using the above mentioned laptop.

10

100

1000

10000

0 10 20 30 40 50 60 70 80 90 100

NVIDIA Tesla C1060 Intel i7 920 (single threaded)

Sample count

Up
da

te
 ti

m
e

[m
s]

Performance Modeling and Automatic Tuning
Recent advances in computer architecture and computing systems, such as
multicore processors and hybrid systems with GPU accelerators, have made the
effort required to maximize the performance of applications on such architectures
relatively high. We have implemented an auto-tuning framework that can
automate the performance tuning process by running a large set of empirical
evaluations to configure applications and libraries on the targeted computing
platform. A performance model can then be tested or used as a supporting
module to narrow the possibly large optimization space of complicated kernels.

Fig. 3: Auto-tuning performed for the DGEMM routine on the Tesla C1060 device at different matrix sizes up to 2000x2000, where the numbers
on the figure represent Gflops obtained. Candidates are the CUDA libraries CUBLAS 2.30 and MAGMA 0.2. We see that for all but the
smallest number of rows, the latter is the better

