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Motivation
In the pursuit of higher resolution simulation models that
use all seismic, geological, and dynamic reservoir data
- and to make use of modern parallel computing archi-
tectures - we consider alternative numerical methods
to solve the system of equations governing subsurface
porous media flow.
It is standard in conventional techniques to use a global
linearization in a Newton-type method to solve the
strongly nonlinear system of equations arising from the
spatial and temporal discretization of the governing sys-
tem of PDEs. Consequently, the memory requirement
to store the sparse Jacobian is significant. Such very
large linear systems result in the linear solver component
to constitute more than 70% of the computation time in
reservoir simulators. Iterative linear solvers depend on
effective preconditioners, which can be hard to paral-
lelize to the extent required by many-core simulations.
In a first step, we investigate feasibility of using the lo-
cally linearizing nonlinear multigrid method Full Approx-
imation Scheme (FAS) in serial to establish algorithmic
performance.

Contribution
I Reservoir simulator based on the nonlinear multigrid

method FAS.
I Comparison with conventional techniques in reservoir

simulation, specifically a reservoir simulator based on
global linearization in Newton’s method. Linear solver
is FGMRES with CPR-AMG preconditioning
implemented using PETSc/BoomerAMG.

Full Approximation Scheme
Consider the nonlinear system

A (u) = f, (1)
with error e = u− v, where v is an approximation to the
exact solution u The residual is

r = f− A (v) (2)
Inserting (1) in (2) gives

A (u)− A (v) = r (3)
Using the error relation, equation (3) becomes

A (v + e)− A (v) = r

For coarsest grid with mesh size H = 2h, where h is
the fine grid mesh size, this is

AH (vH + eH)− AH (vH) = rH (4)
The coarse grid residual rH is computed by applying the
restriction operator IHh to the fine grid residual

rH = IHh rh = IHh (fh − Ah (vh))

Similarly, the coarse grid approximation vH is the restric-
tion of the fine grid approximation vh. Using these defi-
nitions, equation (4) is rewritten into

AH
(
IHh vh + eH

)︸ ︷︷ ︸
uH

= AH
(
IHh vh

)
+ IHh (fh − Ah (vh))︸ ︷︷ ︸

fH

Based on this solution, the coarse grid correction term is
computed as eH = uH − IHh vh. This correction term is
prolongated to a finer grid, where it is used to correct the
solution to the residual equation at that grid, which again
can be used to determine a correction term for an even
finer grid and etc.

The FAS concept is depicted below

Solve AH(uH) = fH

Model equations
Conservation of mass

∂(φmc)

∂t
+∇ · fα = 0,

where φ is the porosity dependent on pressure, mc is
molar density of component c and fα = bαvα is the flux
with the phase molar density bα and the phase velocity
vα given by Darcy’s law.
Volume balance constraint∑

α

Sα = 1,

where Sα is the saturation of phase α.

I 3D with gravitational effects.
I Three immiscible phases: oil, gas and water.
I No capillary effects.

Discretization
I Finite Volume method.
I Backward Euler - Fully Implicit.

FAS components
I V-cycles.
I Nonlinear collective Gauss-Seidel z-line smoother

using 1 newton iteration.
I Thomas algorithm for block tridiagonal systems in

smoother.
I (x, y)-semicoarsening, meaning only x- and
y-directions are coarsened.

Numerical results
For fixed pattern permeability fields as depicted in Fig-
ure 1

Figure 1: Illustration of permeability field

a comparison between a reservoir simulator based
on conventional techniques (standard newton(SN)) with
global linearization in Newton’s method and the simula-
tor based on FAS is displayed in Figure 2. Tests are
“gravity inversion”, where water and gas components
switch place.

Figure 2: Run time as a function of number of grid cells
for standard newton and FAS with 2, 3 and 4 grid levels.
Fixed reservoir size: 480m× 240m× 48m.

FAS is faster and appears to have linear scaling for the
larger problem sizes. The corresponding number of time
steps is listed in Table 1.

Problem size
Method 8× 8× 8 16× 16× 16 24× 24× 24 48× 48× 48

SN 68 101 152 201
FAS(2) 40 60 91 171
FAS(3) 65 83 82 161
FAS(4) N/A 93 94 127

Table 1: Number of time steps for the simulations
displayed in Figure 2. An adaptive time stepping
strategy is employed that seeks to minimize the overall
computational effort.

Residuals for outer iteration
Figure 3 shows residual reduction for 50 time steps,
where each line represents a time step.

Figure 3: Residual reduction for standard newton and
FAS with 2 and 3 grid levels. Problem size:
24× 24× 24.

FAS has quick initial residual reduction suitable for
engineering accuracy purposes.

Computational distribution
As indicated by Figure 4, the majority of the
computational work can be kept in the parallelizable
smoother by increasing the number of grid levels in
FAS.

Figure 4: Distribution of computational work for FAS
with 2, 3 and 4 grid levels. Problem size: 24× 24× 24.

Memory comparisons
FAS is based on local linearization, meaning we avoid
having to assemble the Jacobian on the finest grid,
which results in significant memory savings as outlined
in Table 2.

Method: kB per grid cell:
Standard newton 2.3

FAS(2) 0.7
FAS(3) 0.3
FAS(4) 0.2

Table 2: Memory comparisons for a 128× 128× 128
grid cell problem.

Heterogeneity stress test
As demonstrated by Figure 5, FAS appears to handle
very heterogeneous permeability fields better than
standard newton.

Figure 5: Run time and number of time steps for
problems with different ranges of permeability. Problem
size: 24× 24× 24.

Conclusion and perspectives
I Promising aspects for modern many-core

implementation, e.g. GPUs or Intel MICs.
I Fit larger problems on same hardware and extend to

distributed large-scale simulations.
I Algorithmic performance established for model

equations.
I Next step: More complicated model including wells,

parallel implementation and feasibility study of
polynomial smoothing.
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