
Intro PyOpenCL OpenCL from Python Implementations

Easy, Effective, Efficient:
GPU Programming in Python
with PyOpenCL and PyCUDA

Andreas Klöckner

Courant Institute of Mathematical Sciences
New York University

DTU GPU-Lab Workshop
Lecture 1 · August 17, 2011

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL OpenCL from Python Implementations

Course Outline

Morning Session: Intro

Python, numpy, GPUs

OpenCL

Basic PyOpenCL

Tour of PyOpenCL Runtime

Advanced PyOpenCL usage

OpenCL device language

PyOpenCL: Built-in tools

CL Implementation Notes

Lunch Lab

Python, numpy

Basic PyOpenCL

Afternoon Session: Advanced

Behind the scenes

RTCG: How and Why,
Templating

Automated Tuning

mpi4py and PyOpenCL

Interfacing Python with
Fortran and C/C++

A brief look at PyCUDA

Afternoon Lab

Continue on Lab 1

Advanced PyOpenCL

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL OpenCL from Python Implementations

Outline

1 Intro: Python, Numpy, GPUs, OpenCL

2 GPU Programming with PyOpenCL

3 OpenCL viewed from Python

4 OpenCL implementations

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL OpenCL from Python Implementations Python, Numpy GPUs OpenCL

Outline

1 Intro: Python, Numpy, GPUs, OpenCL
Python, Numpy
GPUs
OpenCL

2 GPU Programming with PyOpenCL

3 OpenCL viewed from Python

4 OpenCL implementations

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL OpenCL from Python Implementations Python, Numpy GPUs OpenCL

Outline

1 Intro: Python, Numpy, GPUs, OpenCL
Python, Numpy
GPUs
OpenCL

2 GPU Programming with PyOpenCL

3 OpenCL viewed from Python

4 OpenCL implementations

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL OpenCL from Python Implementations Python, Numpy GPUs OpenCL

Python in 4 Minutes

Literals 1234, 1234., 0xabc

"a string" """a multi-line

string""" ["a", "list"]

("a", "tuple", 17)

{"a": 17, "dictionary": 19}

Flow Control
if True and a == 10:

print "?" # a comment

while 0 <= x < 17 :

pass # break, continue

for i in [0, 1, 2]:

raise Exception("!")

Functions, Classes
def my function(x):

return 17*x

class MyClass:

def init (self, x):

self.x = x

Program Semantics
a = [1,2,4]

b = a

b.append(17)

print a

[1, 2, 4, 17]

http://docs.python.org

More stuff:

Python 2 vs Python 3

‘Batteries included’

The package index

Cython, Jython, IronPython, PyPy

Interactive console, IPython,
PuDB, Virtualenv, Pip, Spyder,
PEP 8

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

http://docs.python.org

Intro PyOpenCL OpenCL from Python Implementations Python, Numpy GPUs OpenCL

Python in 4 Minutes

Literals 1234, 1234., 0xabc

"a string" """a multi-line

string""" ["a", "list"]

("a", "tuple", 17)

{"a": 17, "dictionary": 19}

Flow Control
if True and a == 10:

print "?" # a comment

while 0 <= x < 17 :

pass # break, continue

for i in [0, 1, 2]:

raise Exception("!")

Functions, Classes
def my function(x):

return 17*x

class MyClass:

def init (self, x):

self.x = x

Program Semantics
a = [1,2,4]

b = a

b.append(17)

print a

[1, 2, 4, 17]

http://docs.python.org

More stuff:

Python 2 vs Python 3

‘Batteries included’

The package index

Cython, Jython, IronPython, PyPy

Interactive console, IPython,
PuDB, Virtualenv, Pip, Spyder,
PEP 8

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

http://docs.python.org

Intro PyOpenCL OpenCL from Python Implementations Python, Numpy GPUs OpenCL

Numpy in 4 Minutes

Creating/Modifying Arrays
import numpy as np

x = np.array([[1,2],[4,5]])

print x.shape # (2,2)

y = np.zeros((20000, 3),

dtype=np.float64)

z = np.empty((20000, 3))

u = np.ones((30, 40))

v = np.linspace(1, 5,20,

endpoint=False)

also: mgrid, eye, arange

+, -, *, +=, np.dot

Indexing Arrays
a = x[:, 1] # a ‘view’

a[:, :] = 17

y = 17

x[3:-3:-1, :] = 17

x[x == 19] = 17

Broadcasting
y[:, :] = 17

y[:, :] = [0, 1, 2]

w = np.array([0, 1, 2]) \
[:, np.newaxis] * [0, 1, 2]

http://docs.scipy.org

More stuff:

‘ufuncs’ sin,exp,...

Linear Algebra, FFT, . . . , SciPy

Structured/masked arrays

‘Fancy’ Indexing

Matplotlib, MayaVi2

C API

Google ‘Numpy Medkit’

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

http://docs.scipy.org

Intro PyOpenCL OpenCL from Python Implementations Python, Numpy GPUs OpenCL

Numpy in 4 Minutes

Creating/Modifying Arrays
import numpy as np

x = np.array([[1,2],[4,5]])

print x.shape # (2,2)

y = np.zeros((20000, 3),

dtype=np.float64)

z = np.empty((20000, 3))

u = np.ones((30, 40))

v = np.linspace(1, 5,20,

endpoint=False)

also: mgrid, eye, arange

+, -, *, +=, np.dot

Indexing Arrays
a = x[:, 1] # a ‘view’

a[:, :] = 17

y = 17

x[3:-3:-1, :] = 17

x[x == 19] = 17

Broadcasting
y[:, :] = 17

y[:, :] = [0, 1, 2]

w = np.array([0, 1, 2]) \
[:, np.newaxis] * [0, 1, 2]

http://docs.scipy.org

More stuff:

‘ufuncs’ sin,exp,...

Linear Algebra, FFT, . . . , SciPy

Structured/masked arrays

‘Fancy’ Indexing

Matplotlib, MayaVi2

C API

Google ‘Numpy Medkit’

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

http://docs.scipy.org

Intro PyOpenCL OpenCL from Python Implementations Python, Numpy GPUs OpenCL

Questions?

?

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL OpenCL from Python Implementations Python, Numpy GPUs OpenCL

Outline

1 Intro: Python, Numpy, GPUs, OpenCL
Python, Numpy
GPUs
OpenCL

2 GPU Programming with PyOpenCL

3 OpenCL viewed from Python

4 OpenCL implementations

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL OpenCL from Python Implementations Python, Numpy GPUs OpenCL

CPU Chip Real Estate

Die floorplan: VIA Isaiah (2008).
65 nm, 4 SP ops at a time, 1 MiB L2.

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL OpenCL from Python Implementations Python, Numpy GPUs OpenCL

“CPU-style” Cores

SIGGRAPH 2009: Beyond Programmable Shading: http://s09.idav.ucdavis.edu/

CPU-“style” cores

ALU
(Execute)

Fetch/
Decode

Execution
Context

Out-of-order control logic

Fancy branch predictor

Memory pre-fetcher

Data cache
(A big one)

13

Credit: Kayvon Fatahalian (Stanford)

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL OpenCL from Python Implementations Python, Numpy GPUs OpenCL

Slimming down

SIGGRAPH 2009: Beyond Programmable Shading: http://s09.idav.ucdavis.edu/

Slimming down

ALU
(Execute)

Fetch/
Decode

Execution
Context

Idea #1:

Remove components that
help a single instruction
stream run fast

14

Credit: Kayvon Fatahalian (Stanford)

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL OpenCL from Python Implementations Python, Numpy GPUs OpenCL

More Space: Double the Number of Cores

SIGGRAPH 2009: Beyond Programmable Shading: http://s09.idav.ucdavis.edu/

Two cores (two fragments in parallel)

ALU
(Execute)

Fetch/
Decode

Execution
Context

ALU
(Execute)

Fetch/
Decode

Execution
Context

<diffuseShader>:

sample r0, v4, t0, s0

mul r3, v0, cb0[0]

madd r3, v1, cb0[1], r3

madd r3, v2, cb0[2], r3

clmp r3, r3, l(0.0), l(1.0)

mul o0, r0, r3

mul o1, r1, r3

mul o2, r2, r3

mov o3, l(1.0)

fragment 1

<diffuseShader>:

sample r0, v4, t0, s0

mul r3, v0, cb0[0]

madd r3, v1, cb0[1], r3

madd r3, v2, cb0[2], r3

clmp r3, r3, l(0.0), l(1.0)

mul o0, r0, r3

mul o1, r1, r3

mul o2, r2, r3

mov o3, l(1.0)

fragment 2

15

Credit: Kayvon Fatahalian (Stanford)

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL OpenCL from Python Implementations Python, Numpy GPUs OpenCL

. . . again

SIGGRAPH 2009: Beyond Programmable Shading: http://s09.idav.ucdavis.edu/

Four cores (four fragments in parallel)

ALU
(Execute)

Fetch/
Decode

Execution
Context

ALU
(Execute)

Fetch/
Decode

Execution
Context

ALU
(Execute)

Fetch/
Decode

Execution
Context

ALU
(Execute)

Fetch/
Decode

Execution
Context

16

Credit: Kayvon Fatahalian (Stanford)

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL OpenCL from Python Implementations Python, Numpy GPUs OpenCL

. . . and again

SIGGRAPH 2009: Beyond Programmable Shading: http://s09.idav.ucdavis.edu/

Sixteen cores (sixteen fragments in parallel)

ALU ALU

ALU ALU

ALU ALU

ALU ALU

ALU ALU

ALU ALU

ALU ALU

ALU ALU

16 cores = 16 simultaneous instruction streams
17 Credit: Kayvon Fatahalian (Stanford)

→ 16 independent instruction streams

Reality: instruction streams not actually
very different/independent

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL OpenCL from Python Implementations Python, Numpy GPUs OpenCL

. . . and again

SIGGRAPH 2009: Beyond Programmable Shading: http://s09.idav.ucdavis.edu/

Sixteen cores (sixteen fragments in parallel)

ALU ALU

ALU ALU

ALU ALU

ALU ALU

ALU ALU

ALU ALU

ALU ALU

ALU ALU

16 cores = 16 simultaneous instruction streams
17 Credit: Kayvon Fatahalian (Stanford)

→ 16 independent instruction streams

Reality: instruction streams not actually
very different/independent

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL OpenCL from Python Implementations Python, Numpy GPUs OpenCL

Saving Yet More Space

SIGGRAPH 2009: Beyond Programmable Shading: http://s09.idav.ucdavis.edu/

Recall: simple processing core

Fetch/
Decode

ALU
(Execute)

Execution
Context

19 SIGGRAPH 2009: Beyond Programmable Shading: http://s09.idav.ucdavis.edu/

Recall: simple processing core

Fetch/
Decode

ALU
(Execute)

Execution
Context

19

Idea #2

Amortize cost/complexity of
managing an instruction stream
across many ALUs

→ SIMD

Credit: Kayvon Fatahalian (Stanford)

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL OpenCL from Python Implementations Python, Numpy GPUs OpenCL

Saving Yet More Space

SIGGRAPH 2009: Beyond Programmable Shading: http://s09.idav.ucdavis.edu/

Recall: simple processing core

Fetch/
Decode

ALU
(Execute)

Execution
Context

19 SIGGRAPH 2009: Beyond Programmable Shading: http://s09.idav.ucdavis.edu/

Recall: simple processing core

Fetch/
Decode

ALU
(Execute)

Execution
Context

19

Idea #2

Amortize cost/complexity of
managing an instruction stream
across many ALUs

→ SIMD

Credit: Kayvon Fatahalian (Stanford)

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL OpenCL from Python Implementations Python, Numpy GPUs OpenCL

Saving Yet More Space

SIGGRAPH 2009: Beyond Programmable Shading: http://s09.idav.ucdavis.edu/

Add ALUs

Fetch/
Decode

Idea #2:

Amortize cost/complexity of
managing an instruction
stream across many ALUs

ALU 1 ALU 2 ALU 3 ALU 4

ALU 5 ALU 6 ALU 7 ALU 8

SIMD processing Ctx Ctx Ctx Ctx

Ctx Ctx Ctx Ctx

Shared Ctx Data

20 SIGGRAPH 2009: Beyond Programmable Shading: http://s09.idav.ucdavis.edu/

Recall: simple processing core

Fetch/
Decode

ALU
(Execute)

Execution
Context

19

Idea #2

Amortize cost/complexity of
managing an instruction stream
across many ALUs

→ SIMD

Credit: Kayvon Fatahalian (Stanford)

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL OpenCL from Python Implementations Python, Numpy GPUs OpenCL

Saving Yet More Space

SIGGRAPH 2009: Beyond Programmable Shading: http://s09.idav.ucdavis.edu/

Add ALUs

Fetch/
Decode

Idea #2:

Amortize cost/complexity of
managing an instruction
stream across many ALUs

ALU 1 ALU 2 ALU 3 ALU 4

ALU 5 ALU 6 ALU 7 ALU 8

SIMD processing Ctx Ctx Ctx Ctx

Ctx Ctx Ctx Ctx

Shared Ctx Data

20 SIGGRAPH 2009: Beyond Programmable Shading: http://s09.idav.ucdavis.edu/

Add ALUs

Fetch/
Decode

Idea #2:

Amortize cost/complexity of
managing an instruction
stream across many ALUs

ALU 1 ALU 2 ALU 3 ALU 4

ALU 5 ALU 6 ALU 7 ALU 8

SIMD processing Ctx Ctx Ctx Ctx

Ctx Ctx Ctx Ctx

Shared Ctx Data

20

Idea #2

Amortize cost/complexity of
managing an instruction stream
across many ALUs

→ SIMD

Credit: Kayvon Fatahalian (Stanford)

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL OpenCL from Python Implementations Python, Numpy GPUs OpenCL

Gratuitous Amounts of Parallelism!

SIGGRAPH 2009: Beyond Programmable Shading: http://s09.idav.ucdavis.edu/

128 fragments in parallel

= 16 simultaneous instruction streams
16 cores = 128 ALUs

24 Credit: Kayvon Fatahalian (Stanford)

Example:

128 instruction streams in parallel
16 independent groups of 8 synchronized streams

Great if everybody in a group does the
same thing.

But what if not?

What leads to divergent instruction
streams?

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL OpenCL from Python Implementations Python, Numpy GPUs OpenCL

Gratuitous Amounts of Parallelism!

SIGGRAPH 2009: Beyond Programmable Shading: http://s09.idav.ucdavis.edu/

128 fragments in parallel

= 16 simultaneous instruction streams
16 cores = 128 ALUs

24 Credit: Kayvon Fatahalian (Stanford)

Example:

128 instruction streams in parallel
16 independent groups of 8 synchronized streams

Great if everybody in a group does the
same thing.

But what if not?

What leads to divergent instruction
streams?

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL OpenCL from Python Implementations Python, Numpy GPUs OpenCL

Gratuitous Amounts of Parallelism!

SIGGRAPH 2009: Beyond Programmable Shading: http://s09.idav.ucdavis.edu/

128 fragments in parallel

= 16 simultaneous instruction streams
16 cores = 128 ALUs

24 Credit: Kayvon Fatahalian (Stanford)

Example:

128 instruction streams in parallel
16 independent groups of 8 synchronized streams

Great if everybody in a group does the
same thing.

But what if not?

What leads to divergent instruction
streams?

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL OpenCL from Python Implementations Python, Numpy GPUs OpenCL

Branches

SIGGRAPH 2009: Beyond Programmable Shading: http://s09.idav.ucdavis.edu/

But what about branches?

ALU 1 ALU 2 . . . ALU 8 . . .
Time

(clocks)

2 ... 1 ... 8

if (x > 0) {

} else {

}

<unconditional
shader code>

<resume unconditional
shader code>

y = pow(x, exp);

y *= Ks;

refl = y + Ka;

x = 0;

refl = Ka;

26

Credit: Kayvon Fatahalian (Stanford)

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL OpenCL from Python Implementations Python, Numpy GPUs OpenCL

Branches

SIGGRAPH 2009: Beyond Programmable Shading: http://s09.idav.ucdavis.edu/

But what about branches?

ALU 1 ALU 2 . . . ALU 8 . . .
Time

(clocks)

2 ... 1 ... 8

if (x > 0) {

} else {

}

<unconditional
shader code>

<resume unconditional
shader code>

y = pow(x, exp);

y *= Ks;

refl = y + Ka;

x = 0;

refl = Ka;

T T T F F F F F

27

Credit: Kayvon Fatahalian (Stanford)

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL OpenCL from Python Implementations Python, Numpy GPUs OpenCL

Branches

SIGGRAPH 2009: Beyond Programmable Shading: http://s09.idav.ucdavis.edu/

But what about branches?

ALU 1 ALU 2 . . . ALU 8 . . .
Time

(clocks)

2 ... 1 ... 8

if (x > 0) {

} else {

}

<unconditional
shader code>

<resume unconditional
shader code>

y = pow(x, exp);

y *= Ks;

refl = y + Ka;

x = 0;

refl = Ka;

T T T F F F F F

Not all ALUs do useful work!
Worst case: 1/8 performance

28

Credit: Kayvon Fatahalian (Stanford)

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL OpenCL from Python Implementations Python, Numpy GPUs OpenCL

Branches

SIGGRAPH 2009: Beyond Programmable Shading: http://s09.idav.ucdavis.edu/

But what about branches?

ALU 1 ALU 2 . . . ALU 8 . . .
Time

(clocks)

2 ... 1 ... 8

if (x > 0) {

} else {

}

<unconditional
shader code>

<resume unconditional
shader code>

y = pow(x, exp);

y *= Ks;

refl = y + Ka;

x = 0;

refl = Ka;

T T T F F F F F

29

Credit: Kayvon Fatahalian (Stanford)

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL OpenCL from Python Implementations Python, Numpy GPUs OpenCL

Remaining Problem: Slow Memory

Problem

Memory still has very high latency. . .
. . . but we’ve removed most of the
hardware that helps us deal with that.

We’ve removed

caches

branch prediction

out-of-order execution

So what now?

Idea #3

Even more parallelism
+ Some extra memory

= A solution!

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL OpenCL from Python Implementations Python, Numpy GPUs OpenCL

Remaining Problem: Slow Memory

Problem

Memory still has very high latency. . .
. . . but we’ve removed most of the
hardware that helps us deal with that.

We’ve removed

caches

branch prediction

out-of-order execution

So what now?

Idea #3

Even more parallelism
+ Some extra memory

= A solution!

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL OpenCL from Python Implementations Python, Numpy GPUs OpenCL

Remaining Problem: Slow Memory

Problem

Memory still has very high latency. . .
. . . but we’ve removed most of the
hardware that helps us deal with that.

We’ve removed

caches

branch prediction

out-of-order execution

So what now?SIGGRAPH 2009: Beyond Programmable Shading: http://s09.idav.ucdavis.edu/

Hiding shader stalls
Time

(clocks)
Frag 1 … 8

Fetch/
Decode

Ctx Ctx Ctx Ctx

Ctx Ctx Ctx Ctx

Shared Ctx Data

ALU ALU ALU ALU

ALU ALU ALU ALU

33

Idea #3

Even more parallelism
+ Some extra memory

= A solution!

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL OpenCL from Python Implementations Python, Numpy GPUs OpenCL

Remaining Problem: Slow Memory

Problem

Memory still has very high latency. . .
. . . but we’ve removed most of the
hardware that helps us deal with that.

We’ve removed

caches

branch prediction

out-of-order execution

So what now?SIGGRAPH 2009: Beyond Programmable Shading: http://s09.idav.ucdavis.edu/

Hiding shader stalls
Time

(clocks)

Fetch/
Decode

ALU ALU ALU ALU

ALU ALU ALU ALU

1 2

3 4

1 2 3 4

Frag 1 … 8 Frag 9… 16 Frag 17 … 24 Frag 25 … 32

34

Idea #3

Even more parallelism
+ Some extra memory

= A solution!

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL OpenCL from Python Implementations Python, Numpy GPUs OpenCL

Hiding Memory Latency

SIGGRAPH 2009: Beyond Programmable Shading: http://s09.idav.ucdavis.edu/

Hiding shader stalls
Time

(clocks)
Frag 1 … 8

Fetch/
Decode

Ctx Ctx Ctx Ctx

Ctx Ctx Ctx Ctx

Shared Ctx Data

ALU ALU ALU ALU

ALU ALU ALU ALU

33

Credit: Kayvon Fatahalian (Stanford)

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL OpenCL from Python Implementations Python, Numpy GPUs OpenCL

Hiding Memory Latency

SIGGRAPH 2009: Beyond Programmable Shading: http://s09.idav.ucdavis.edu/

Hiding shader stalls
Time

(clocks)

Fetch/
Decode

ALU ALU ALU ALU

ALU ALU ALU ALU

1 2

3 4

1 2 3 4

Frag 1 … 8 Frag 9… 16 Frag 17 … 24 Frag 25 … 32

34

Credit: Kayvon Fatahalian (Stanford)

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL OpenCL from Python Implementations Python, Numpy GPUs OpenCL

Hiding Memory Latency

SIGGRAPH 2009: Beyond Programmable Shading: http://s09.idav.ucdavis.edu/

Hiding shader stalls
Time

(clocks)

Stall

Runnable

1 2 3 4

Frag 1 … 8 Frag 9… 16 Frag 17 … 24 Frag 25 … 32

35

Credit: Kayvon Fatahalian (Stanford)

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL OpenCL from Python Implementations Python, Numpy GPUs OpenCL

Hiding Memory Latency

SIGGRAPH 2009: Beyond Programmable Shading: http://s09.idav.ucdavis.edu/

Hiding shader stalls
Time

(clocks)

Stall

Runnable

1 2 3 4

Frag 1 … 8 Frag 9… 16 Frag 17 … 24 Frag 25 … 32

36

Credit: Kayvon Fatahalian (Stanford)

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL OpenCL from Python Implementations Python, Numpy GPUs OpenCL

Hiding Memory Latency

SIGGRAPH 2009: Beyond Programmable Shading: http://s09.idav.ucdavis.edu/

Hiding shader stalls
Time

(clocks)

1 2 3 4

Stall

Stall

Stall

Stall

Runnable

Runnable

Runnable

Frag 1 … 8 Frag 9… 16 Frag 17 … 24 Frag 25 … 32

37

Credit: Kayvon Fatahalian (Stanford)

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL OpenCL from Python Implementations Python, Numpy GPUs OpenCL

Hiding Memory Latency

SIGGRAPH 2009: Beyond Programmable Shading: http://s09.idav.ucdavis.edu/

Throughput!
Time

(clocks)

Stall

Runnable

2 3 4

Frag 1 … 8 Frag 9… 16 Frag 17 … 24 Frag 25 … 32

Done!

Stall

Runnable

Done!

Stall

Runnable

Done!

Stall

Runnable

Done!

1

Increase run time of one group
To maximum throughput of many groups

Start

Start

Start

38

Credit: Kayvon Fatahalian (Stanford)

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL OpenCL from Python Implementations Python, Numpy GPUs OpenCL

GPU Architecture Summary

Core Ideas:

1 Many slimmed down cores
→ lots of parallelism

2 More ALUs, Fewer Control Units

3 Avoid memory stalls by interleaving
execution of SIMD groups
(“warps”)

Credit: Kayvon Fatahalian (Stanford)

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL OpenCL from Python Implementations Python, Numpy GPUs OpenCL

Connection: Hardware ↔ Programming Model

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Who cares how

many cores?

Idea:

Program as if there were
“infinitely” many cores

Program as if there were
“infinitely” many ALUs per
core

Consider: Which is easy to do automatically?

Parallel program → sequential hardware

or

Sequential program → parallel hardware?

Axis 0

A
xi

s
1

Hardware
Software representation

?

Really: Group provides
pool of parallelism to draw
from.

X,Y,Z order within group
matters. (Not among
groups, though.)

Grids can be 1,2,3-dimensional.

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL OpenCL from Python Implementations Python, Numpy GPUs OpenCL

Connection: Hardware ↔ Programming Model

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Who cares how

many cores?

Idea:

Program as if there were
“infinitely” many cores

Program as if there were
“infinitely” many ALUs per
core

Consider: Which is easy to do automatically?

Parallel program → sequential hardware

or

Sequential program → parallel hardware?

Axis 0

A
xi

s
1

Hardware
Software representation

?

Really: Group provides
pool of parallelism to draw
from.

X,Y,Z order within group
matters. (Not among
groups, though.)

Grids can be 1,2,3-dimensional.

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL OpenCL from Python Implementations Python, Numpy GPUs OpenCL

Connection: Hardware ↔ Programming Model

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Who cares how

many cores?

Idea:

Program as if there were
“infinitely” many cores

Program as if there were
“infinitely” many ALUs per
core

Consider: Which is easy to do automatically?

Parallel program → sequential hardware

or

Sequential program → parallel hardware?

Axis 0

A
xi

s
1

Hardware
Software representation

?

Really: Group provides
pool of parallelism to draw
from.

X,Y,Z order within group
matters. (Not among
groups, though.)

Grids can be 1,2,3-dimensional.

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL OpenCL from Python Implementations Python, Numpy GPUs OpenCL

Connection: Hardware ↔ Programming Model

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Who cares how

many cores?

Idea:

Program as if there were
“infinitely” many cores

Program as if there were
“infinitely” many ALUs per
core

Consider: Which is easy to do automatically?

Parallel program → sequential hardware

or

Sequential program → parallel hardware?

Axis 0

A
xi

s
1

Hardware
Software representation

?

Really: Group provides
pool of parallelism to draw
from.

X,Y,Z order within group
matters. (Not among
groups, though.)

Grids can be 1,2,3-dimensional.

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL OpenCL from Python Implementations Python, Numpy GPUs OpenCL

Connection: Hardware ↔ Programming Model

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Who cares how

many cores?

Idea:

Program as if there were
“infinitely” many cores

Program as if there were
“infinitely” many ALUs per
core

Consider: Which is easy to do automatically?

Parallel program → sequential hardware

or

Sequential program → parallel hardware?

Axis 0

A
xi

s
1

Hardware
Software representation

?

Really: Group provides
pool of parallelism to draw
from.

X,Y,Z order within group
matters. (Not among
groups, though.)

Grids can be 1,2,3-dimensional.

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL OpenCL from Python Implementations Python, Numpy GPUs OpenCL

Connection: Hardware ↔ Programming Model

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Who cares how

many cores?

Idea:

Program as if there were
“infinitely” many cores

Program as if there were
“infinitely” many ALUs per
core

Consider: Which is easy to do automatically?

Parallel program → sequential hardware

or

Sequential program → parallel hardware?

Axis 0

A
xi

s
1

Hardware
Software representation

?

Really: Group provides
pool of parallelism to draw
from.

X,Y,Z order within group
matters. (Not among
groups, though.)

Grids can be 1,2,3-dimensional.

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL OpenCL from Python Implementations Python, Numpy GPUs OpenCL

Connection: Hardware ↔ Programming Model

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Who cares how

many cores?

Idea:

Program as if there were
“infinitely” many cores

Program as if there were
“infinitely” many ALUs per
core

Consider: Which is easy to do automatically?

Parallel program → sequential hardware

or

Sequential program → parallel hardware?

Axis 0

A
xi

s
1

Hardware
Software representation

?

Really: Group provides
pool of parallelism to draw
from.

X,Y,Z order within group
matters. (Not among
groups, though.)

Grids can be 1,2,3-dimensional.

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL OpenCL from Python Implementations Python, Numpy GPUs OpenCL

Connection: Hardware ↔ Programming Model

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Who cares how

many cores?

Idea:

Program as if there were
“infinitely” many cores

Program as if there were
“infinitely” many ALUs per
core

Consider: Which is easy to do automatically?

Parallel program → sequential hardware

or

Sequential program → parallel hardware?

Axis 0

A
xi

s
1

Hardware
Software representation

?

Really: Group provides
pool of parallelism to draw
from.

X,Y,Z order within group
matters. (Not among
groups, though.)

Grids can be 1,2,3-dimensional.

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL OpenCL from Python Implementations Python, Numpy GPUs OpenCL

Connection: Hardware ↔ Programming Model

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Who cares how

many cores?

Idea:

Program as if there were
“infinitely” many cores

Program as if there were
“infinitely” many ALUs per
core

Consider: Which is easy to do automatically?

Parallel program → sequential hardware

or

Sequential program → parallel hardware?

Axis 0

A
xi

s
1

Hardware
Software representation

?

Really: Group provides
pool of parallelism to draw
from.

X,Y,Z order within group
matters. (Not among
groups, though.)

Grids can be 1,2,3-dimensional.

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL OpenCL from Python Implementations Python, Numpy GPUs OpenCL

Connection: Hardware ↔ Programming Model

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Who cares how

many cores?

Idea:

Program as if there were
“infinitely” many cores

Program as if there were
“infinitely” many ALUs per
core

Consider: Which is easy to do automatically?

Parallel program → sequential hardware

or

Sequential program → parallel hardware?

Axis 0

A
xi

s
1

Hardware

Software representation

?

Really: Group provides
pool of parallelism to draw
from.

X,Y,Z order within group
matters. (Not among
groups, though.)

Grids can be 1,2,3-dimensional.

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL OpenCL from Python Implementations Python, Numpy GPUs OpenCL

Connection: Hardware ↔ Programming Model

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Who cares how

many cores?

Idea:

Program as if there were
“infinitely” many cores

Program as if there were
“infinitely” many ALUs per
core

Consider: Which is easy to do automatically?

Parallel program → sequential hardware

or

Sequential program → parallel hardware?

Axis 0

A
xi

s
1

Hardware
Software representation

?

Really: Group provides
pool of parallelism to draw
from.

X,Y,Z order within group
matters. (Not among
groups, though.)

Grids can be 1,2,3-dimensional.

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL OpenCL from Python Implementations Python, Numpy GPUs OpenCL

Connection: Hardware ↔ Programming Model

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Who cares how

many cores?

Idea:

Program as if there were
“infinitely” many cores

Program as if there were
“infinitely” many ALUs per
core

Consider: Which is easy to do automatically?

Parallel program → sequential hardware

or

Sequential program → parallel hardware?

Axis 0

A
xi

s
1

Hardware
Software representation

Grid

(Kernel: Func-

tion on Grid)

?

Really: Group provides
pool of parallelism to draw
from.

X,Y,Z order within group
matters. (Not among
groups, though.)

Grids can be 1,2,3-dimensional.

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL OpenCL from Python Implementations Python, Numpy GPUs OpenCL

Connection: Hardware ↔ Programming Model

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Who cares how

many cores?

Idea:

Program as if there were
“infinitely” many cores

Program as if there were
“infinitely” many ALUs per
core

Consider: Which is easy to do automatically?

Parallel program → sequential hardware

or

Sequential program → parallel hardware?

Axis 0

A
xi

s
1

Hardware
Software representation

Grid

(Kernel: Func-

tion on Grid)

(Work) Group

?

Really: Group provides
pool of parallelism to draw
from.

X,Y,Z order within group
matters. (Not among
groups, though.)

Grids can be 1,2,3-dimensional.

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL OpenCL from Python Implementations Python, Numpy GPUs OpenCL

Connection: Hardware ↔ Programming Model

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Who cares how

many cores?

Idea:

Program as if there were
“infinitely” many cores

Program as if there were
“infinitely” many ALUs per
core

Consider: Which is easy to do automatically?

Parallel program → sequential hardware

or

Sequential program → parallel hardware?

Axis 0

A
xi

s
1

Hardware
Software representation

Grid

(Kernel: Func-

tion on Grid)

(Work) Group

(Work) Item

?

Really: Group provides
pool of parallelism to draw
from.

X,Y,Z order within group
matters. (Not among
groups, though.)

Grids can be 1,2,3-dimensional.

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL OpenCL from Python Implementations Python, Numpy GPUs OpenCL

Connection: Hardware ↔ Programming Model

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Who cares how

many cores?

Idea:

Program as if there were
“infinitely” many cores

Program as if there were
“infinitely” many ALUs per
core

Consider: Which is easy to do automatically?

Parallel program → sequential hardware

or

Sequential program → parallel hardware?

Axis 0

A
xi

s
1

Hardware
Software representation

?

Really: Group provides
pool of parallelism to draw
from.

X,Y,Z order within group
matters. (Not among
groups, though.)

Grids can be 1,2,3-dimensional.

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL OpenCL from Python Implementations Python, Numpy GPUs OpenCL

Connection: Hardware ↔ Programming Model

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Who cares how

many cores?

Idea:

Program as if there were
“infinitely” many cores

Program as if there were
“infinitely” many ALUs per
core

Consider: Which is easy to do automatically?

Parallel program → sequential hardware

or

Sequential program → parallel hardware?

Axis 0

A
xi

s
1

Hardware
Software representation

?

Really: Group provides
pool of parallelism to draw
from.

X,Y,Z order within group
matters. (Not among
groups, though.)

Grids can be 1,2,3-dimensional.

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL OpenCL from Python Implementations Python, Numpy GPUs OpenCL

Connection: Hardware ↔ Programming Model

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Who cares how

many cores?

Idea:

Program as if there were
“infinitely” many cores

Program as if there were
“infinitely” many ALUs per
core

Consider: Which is easy to do automatically?

Parallel program → sequential hardware

or

Sequential program → parallel hardware?

Axis 0

A
xi

s
1

Hardware
Software representation

?

Really: Group provides
pool of parallelism to draw
from.

X,Y,Z order within group
matters. (Not among
groups, though.)

Grids can be 1,2,3-dimensional.

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL OpenCL from Python Implementations Python, Numpy GPUs OpenCL

Connection: Hardware ↔ Programming Model

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Who cares how

many cores?

Idea:

Program as if there were
“infinitely” many cores

Program as if there were
“infinitely” many ALUs per
core

Consider: Which is easy to do automatically?

Parallel program → sequential hardware

or

Sequential program → parallel hardware?

Axis 0

A
xi

s
1

Hardware
Software representation

?

Really: Group provides
pool of parallelism to draw
from.

X,Y,Z order within group
matters. (Not among
groups, though.)

Grids can be 1,2,3-dimensional.

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL OpenCL from Python Implementations Python, Numpy GPUs OpenCL

Connection: Hardware ↔ Programming Model

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Who cares how

many cores?

Idea:

Program as if there were
“infinitely” many cores

Program as if there were
“infinitely” many ALUs per
core

Consider: Which is easy to do automatically?

Parallel program → sequential hardware

or

Sequential program → parallel hardware?

Axis 0

A
xi

s
1

Hardware
Software representation

?

Really: Group provides
pool of parallelism to draw
from.

X,Y,Z order within group
matters. (Not among
groups, though.)

Grids can be 1,2,3-dimensional.

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL OpenCL from Python Implementations Python, Numpy GPUs OpenCL

Connection: Hardware ↔ Programming Model

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Who cares how

many cores?

Idea:

Program as if there were
“infinitely” many cores

Program as if there were
“infinitely” many ALUs per
core

Consider: Which is easy to do automatically?

Parallel program → sequential hardware

or

Sequential program → parallel hardware?

Axis 0

A
xi

s
1

Hardware
Software representation

?

Really: Group provides
pool of parallelism to draw
from.

X,Y,Z order within group
matters. (Not among
groups, though.)

Grids can be 1,2,3-dimensional.

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL OpenCL from Python Implementations Python, Numpy GPUs OpenCL

Connection: Hardware ↔ Programming Model

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Who cares how

many cores?

Idea:

Program as if there were
“infinitely” many cores

Program as if there were
“infinitely” many ALUs per
core

Consider: Which is easy to do automatically?

Parallel program → sequential hardware

or

Sequential program → parallel hardware?

Axis 0

A
xi

s
1

Hardware
Software representation

?

Really: Group provides
pool of parallelism to draw
from.

X,Y,Z order within group
matters. (Not among
groups, though.)

Grids can be 1,2,3-dimensional.

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL OpenCL from Python Implementations Python, Numpy GPUs OpenCL

Connection: Hardware ↔ Programming Model

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Who cares how

many cores?

Idea:

Program as if there were
“infinitely” many cores

Program as if there were
“infinitely” many ALUs per
core

Consider: Which is easy to do automatically?

Parallel program → sequential hardware

or

Sequential program → parallel hardware?

Axis 0

A
xi

s
1

Hardware
Software representation

?

Really: Group provides
pool of parallelism to draw
from.

X,Y,Z order within group
matters. (Not among
groups, though.)

Grids can be 1,2,3-dimensional.

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL OpenCL from Python Implementations Python, Numpy GPUs OpenCL

Connection: Hardware ↔ Programming Model

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Who cares how

many cores?

Idea:

Program as if there were
“infinitely” many cores

Program as if there were
“infinitely” many ALUs per
core

Consider: Which is easy to do automatically?

Parallel program → sequential hardware

or

Sequential program → parallel hardware?

Axis 0

A
xi

s
1

Hardware
Software representation

?

Really: Group provides
pool of parallelism to draw
from.

X,Y,Z order within group
matters. (Not among
groups, though.)

Grids can be 1,2,3-dimensional.

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL OpenCL from Python Implementations Python, Numpy GPUs OpenCL

Connection: Hardware ↔ Programming Model

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Who cares how

many cores?

Idea:

Program as if there were
“infinitely” many cores

Program as if there were
“infinitely” many ALUs per
core

Consider: Which is easy to do automatically?

Parallel program → sequential hardware

or

Sequential program → parallel hardware?

Axis 0

A
xi

s
1

Hardware
Software representation

?

Really: Group provides
pool of parallelism to draw
from.

X,Y,Z order within group
matters. (Not among
groups, though.)

Grids can be 1,2,3-dimensional.

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL OpenCL from Python Implementations Python, Numpy GPUs OpenCL

Connection: Hardware ↔ Programming Model

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Who cares how

many cores?

Idea:

Program as if there were
“infinitely” many cores

Program as if there were
“infinitely” many ALUs per
core

Consider: Which is easy to do automatically?

Parallel program → sequential hardware

or

Sequential program → parallel hardware?

Axis 0

A
xi

s
1

Hardware
Software representation

?

Really: Group provides
pool of parallelism to draw
from.

X,Y,Z order within group
matters. (Not among
groups, though.)

Grids can be 1,2,3-dimensional.

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL OpenCL from Python Implementations Python, Numpy GPUs OpenCL

Connection: Hardware ↔ Programming Model

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Who cares how

many cores?

Idea:

Program as if there were
“infinitely” many cores

Program as if there were
“infinitely” many ALUs per
core

Consider: Which is easy to do automatically?

Parallel program → sequential hardware

or

Sequential program → parallel hardware?

Axis 0

A
xi

s
1

Hardware
Software representation

?

Really: Group provides
pool of parallelism to draw
from.

X,Y,Z order within group
matters. (Not among
groups, though.)

Grids can be 1,2,3-dimensional.

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL OpenCL from Python Implementations Python, Numpy GPUs OpenCL

Connection: Hardware ↔ Programming Model

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Who cares how

many cores?

Idea:

Program as if there were
“infinitely” many cores

Program as if there were
“infinitely” many ALUs per
core

Consider: Which is easy to do automatically?

Parallel program → sequential hardware

or

Sequential program → parallel hardware?

Axis 0

A
xi

s
1

Hardware
Software representation

?

Really: Group provides
pool of parallelism to draw
from.

X,Y,Z order within group
matters. (Not among
groups, though.)

get local id(axis)?/size(axis)?

get group id(axis)?/num groups(axis)?

get global id(axis)?/size(axis)?

axis=0,1,2,...

Grids can be 1,2,3-dimensional.

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL OpenCL from Python Implementations Python, Numpy GPUs OpenCL

Connection: Hardware ↔ Programming Model

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Who cares how

many cores?

Idea:

Program as if there were
“infinitely” many cores

Program as if there were
“infinitely” many ALUs per
core

Consider: Which is easy to do automatically?

Parallel program → sequential hardware

or

Sequential program → parallel hardware?

Axis 0

A
xi

s
1

Hardware
Software representation

?

Really: Group provides
pool of parallelism to draw
from.

X,Y,Z order within group
matters. (Not among
groups, though.)

get local id(axis)?/size(axis)?

get group id(axis)?/num groups(axis)?

get global id(axis)?/size(axis)?

axis=0,1,2,...

Grids can be 1,2,3-dimensional.

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL OpenCL from Python Implementations Python, Numpy GPUs OpenCL

GPU architecture: Overview

Now know about basic execution model.

Observe: Same model also applies to multi-core CPUs!

→ the “OpenCL” execution model

Will learn more about GPUs later. In particular:

Memory access

Device Management

Synchronization

Note: CPUs have a very different memory system.

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL OpenCL from Python Implementations Python, Numpy GPUs OpenCL

Outline

1 Intro: Python, Numpy, GPUs, OpenCL
Python, Numpy
GPUs
OpenCL

2 GPU Programming with PyOpenCL

3 OpenCL viewed from Python

4 OpenCL implementations

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL OpenCL from Python Implementations Python, Numpy GPUs OpenCL

What is OpenCL?

OpenCL (Open Computing Language) is an
open, royalty-free standard for general purpose
parallel programming across CPUs, GPUs and
other processors. [OpenCL 1.1 spec]

Device-neutral (Nv GPU, AMD GPU,
Intel/AMD CPU)

Vendor-neutral

Comes with RTCG

Defines:

Host-side programming interface (library)

Device-side programming language (!)

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL OpenCL from Python Implementations Python, Numpy GPUs OpenCL

Who?

© Copyright Khronos Group, 2010 - Page 4

OpenCL Working Group

• Diverse industry participation

- Processor vendors, system OEMs, middleware vendors, application developers

• Many industry-leading experts involved in OpenCL’s design

- A healthy diversity of industry perspectives

• Apple made initial proposal and is very active in the working group

- Serving as specification editor

Credit: Khronos Group

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL OpenCL from Python Implementations Python, Numpy GPUs OpenCL

When?

© Copyright Khronos Group, 2010 - Page 5

OpenCL Timeline

• Six months from proposal to released OpenCL 1.0 specification

- Due to a strong initial proposal and a shared commercial incentive

• Multiple conformant implementations shipping

- Apple’s Mac OS X Snow Leopard now ships with OpenCL

• 18 month cadence between OpenCL 1.0 and OpenCL 1.1

- Backwards compatibility protect software investment

Apple proposes OpenCL
working group and
contributes draft specification
to Khronos

Khronos publicly
releases OpenCL 1.0 as
royalty-free
specification

Khronos releases OpenCL
1.0 conformance tests to
ensure high-quality
implementations

Jun08

Dec08

May09

2H09

Multiple conformant
implementations ship
across diverse OS
and platforms

Jun10

OpenCL 1.1
Specification released and
first implementations ship

Credit: Khronos Group

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL OpenCL from Python Implementations Python, Numpy GPUs OpenCL

Why?

© Copyright Khronos Group, 2010 - Page 3

Processor Parallelism

CPUs
Multiple cores driving
performance increases

GPUs
Increasingly general
purpose data-parallel

computing

Graphics
APIs and
Shading

Languages

Multi-
processor

programming
– e.g. OpenMP

Emerging
Intersection

Heterogeneous
Computing

OpenCL is a programming framework for heterogeneous compute resources

Credit: Khronos Group

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL OpenCL from Python Implementations Python, Numpy GPUs OpenCL

CL vs CUDA side-by-side

CUDA source code:
global void transpose(

float ∗A t, float ∗A,
int a width, int a height)

{
int base idx a =

blockIdx .x ∗ BLK SIZE +
blockIdx .y ∗ A BLOCK STRIDE;

int base idx a t =
blockIdx .y ∗ BLK SIZE +
blockIdx .x ∗ A T BLOCK STRIDE;

int glob idx a =
base idx a + threadIdx.x
+ a width ∗ threadIdx.y;

int glob idx a t =
base idx a t + threadIdx.x
+ a height ∗ threadIdx .y;

shared float A shared[BLK SIZE][BLK SIZE+1];

A shared[threadIdx .y][threadIdx .x] =
A[glob idx a];

syncthreads ();

A t[glob idx a t] =
A shared[threadIdx .x][threadIdx .y];

}

OpenCL source code:
void transpose(

global float ∗a t, global float ∗a,
unsigned a width, unsigned a height)
{

int base idx a =
get group id (0) ∗ BLK SIZE +
get group id (1) ∗ A BLOCK STRIDE;

int base idx a t =
get group id (1) ∗ BLK SIZE +
get group id (0) ∗ A T BLOCK STRIDE;

int glob idx a =
base idx a + get local id (0)
+ a width ∗ get local id (1);

int glob idx a t =
base idx a t + get local id (0)
+ a height ∗ get local id (1);

local float a local [BLK SIZE][BLK SIZE+1];

a local [get local id (1)∗BLK SIZE+get local id(0)] =
a[glob idx a];

barrier (CLK LOCAL MEM FENCE);

a t [glob idx a t] =
a local [get local id (0)∗BLK SIZE+get local id(1)];

}

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL OpenCL from Python Implementations Python, Numpy GPUs OpenCL

OpenCL ↔ CUDA: A dictionary

OpenCL CUDA
Grid Grid

Work Group Block
Work Item Thread

kernel global

global device

local shared

private local

imagend t texture<type, n, ...>
barrier(LMF) syncthreads()

get local id(012) threadIdx.xyz

get group id(012) blockIdx.xyz

get global id(012) – (reimplement)

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL OpenCL from Python Implementations Python, Numpy GPUs OpenCL

OpenCL: Computing as a Service

Host
(CPU)

Memory

Compute Device 0 (Platform 0)

· · ·
· · ·
· · ·

Memory

Compute Device 1 (Platform 0)

· · ·
· · ·
· · ·

Memory

Compute Device 0 (Platform 1)

· · ·
· · ·
· · ·

Memory

Compute Device 1 (Platform 1)

· · ·
· · ·
· · ·

Memory

Platform 0 (e.g. CPUs)

Platform 1 (e.g. GPUs)

(think “chip”,
has memory
interface)

Compute Unit
(think “processor”,
has insn. fetch)

Processing Element
(think “SIMD lane”)

Python

Device Language: ∼ C99

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL OpenCL from Python Implementations Python, Numpy GPUs OpenCL

OpenCL: Computing as a Service

Host
(CPU)

Memory

Compute Device 0 (Platform 0)

· · ·
· · ·
· · ·

Memory

Compute Device 1 (Platform 0)

· · ·
· · ·
· · ·

Memory

Compute Device 0 (Platform 1)

· · ·
· · ·
· · ·

Memory

Compute Device 1 (Platform 1)

· · ·
· · ·
· · ·

Memory

Platform 0 (e.g. CPUs)

Platform 1 (e.g. GPUs)

(think “chip”,
has memory
interface)

Compute Unit
(think “processor”,
has insn. fetch)

Processing Element
(think “SIMD lane”)

Python

Device Language: ∼ C99

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL OpenCL from Python Implementations Python, Numpy GPUs OpenCL

OpenCL: Computing as a Service

Host
(CPU)

Memory

Compute Device 0 (Platform 0)

· · ·
· · ·
· · ·

Memory

Compute Device 1 (Platform 0)

· · ·
· · ·
· · ·

Memory

Compute Device 0 (Platform 1)

· · ·
· · ·
· · ·

Memory

Compute Device 1 (Platform 1)

· · ·
· · ·
· · ·

Memory

Platform 0 (e.g. CPUs)

Platform 1 (e.g. GPUs)

(think “chip”,
has memory
interface)

Compute Unit
(think “processor”,
has insn. fetch)

Processing Element
(think “SIMD lane”)

Python

Device Language: ∼ C99

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL OpenCL from Python Implementations Python, Numpy GPUs OpenCL

OpenCL: Computing as a Service

Host
(CPU)

Memory

Compute Device 0 (Platform 0)

· · ·
· · ·
· · ·

Memory
Compute Device 1 (Platform 0)

· · ·
· · ·
· · ·

Memory
Compute Device 0 (Platform 1)

· · ·
· · ·
· · ·

Memory
Compute Device 1 (Platform 1)

· · ·
· · ·
· · ·

Memory

Platform 0 (e.g. CPUs)

Platform 1 (e.g. GPUs)

(think “chip”,
has memory
interface)

Compute Unit
(think “processor”,
has insn. fetch)

Processing Element
(think “SIMD lane”)

Python

Device Language: ∼ C99

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL OpenCL from Python Implementations Python, Numpy GPUs OpenCL

OpenCL: Computing as a Service

Host
(CPU)

Memory

Compute Device 0 (Platform 0)

· · ·
· · ·
· · ·

Memory

Compute Device 1 (Platform 0)

· · ·
· · ·
· · ·

Memory

Compute Device 0 (Platform 1)

· · ·
· · ·
· · ·

Memory

Compute Device 1 (Platform 1)

· · ·
· · ·
· · ·

Memory

Platform 0 (e.g. CPUs)

Platform 1 (e.g. GPUs)

(think “chip”,
has memory
interface)

Compute Unit
(think “processor”,
has insn. fetch)

Processing Element
(think “SIMD lane”)

Python

Device Language: ∼ C99

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL OpenCL from Python Implementations Python, Numpy GPUs OpenCL

OpenCL: Computing as a Service

Host
(CPU)

Memory

Compute Device 0 (Platform 0)

· · ·
· · ·
· · ·

Memory

Compute Device 1 (Platform 0)

· · ·
· · ·
· · ·

Memory

Compute Device 0 (Platform 1)

· · ·
· · ·
· · ·

Memory

Compute Device 1 (Platform 1)

· · ·
· · ·
· · ·

Memory

Platform 0 (e.g. CPUs)

Platform 1 (e.g. GPUs)

(think “chip”,
has memory
interface)

Compute Unit
(think “processor”,
has insn. fetch)

Processing Element
(think “SIMD lane”)

Python

Device Language: ∼ C99

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL OpenCL from Python Implementations Python, Numpy GPUs OpenCL

OpenCL: Computing as a Service

Host
(CPU)

Memory

Compute Device 0 (Platform 0)

· · ·
· · ·
· · ·

Memory

Compute Device 1 (Platform 0)

· · ·
· · ·
· · ·

Memory

Compute Device 0 (Platform 1)

· · ·
· · ·
· · ·

Memory

Compute Device 1 (Platform 1)

· · ·
· · ·
· · ·

Memory

Platform 0 (e.g. CPUs)

Platform 1 (e.g. GPUs)

(think “chip”,
has memory
interface)

Compute Unit
(think “processor”,
has insn. fetch)

Processing Element
(think “SIMD lane”)

Python

Device Language: ∼ C99

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL OpenCL from Python Implementations Python, Numpy GPUs OpenCL

OpenCL: Computing as a Service

Host
(CPU)

Memory

Compute Device 0 (Platform 0)

· · ·
· · ·
· · ·

Memory

Compute Device 1 (Platform 0)

· · ·
· · ·
· · ·

Memory

Compute Device 0 (Platform 1)

· · ·
· · ·
· · ·

Memory

Compute Device 1 (Platform 1)

· · ·
· · ·
· · ·

Memory

Platform 0 (e.g. CPUs)

Platform 1 (e.g. GPUs)

(think “chip”,
has memory
interface)

Compute Unit
(think “processor”,
has insn. fetch)

Processing Element
(think “SIMD lane”)

Python

Device Language: ∼ C99

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL OpenCL from Python Implementations Python, Numpy GPUs OpenCL

OpenCL: Computing as a Service

Host
(CPU)

Memory

Compute Device 0 (Platform 0)

· · ·
· · ·
· · ·

Memory

Compute Device 1 (Platform 0)

· · ·
· · ·
· · ·

Memory

Compute Device 0 (Platform 1)

· · ·
· · ·
· · ·

Memory

Compute Device 1 (Platform 1)

· · ·
· · ·
· · ·

Memory

Platform 0 (e.g. CPUs)

Platform 1 (e.g. GPUs)

(think “chip”,
has memory
interface)

Compute Unit
(think “processor”,
has insn. fetch)

Processing Element
(think “SIMD lane”)

Python

Device Language: ∼ C99

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL OpenCL from Python Implementations Python, Numpy GPUs OpenCL

OpenCL: Computing as a Service

Host
(CPU)

Memory

Compute Device 0 (Platform 0)

· · ·
· · ·
· · ·

Memory

Compute Device 1 (Platform 0)

· · ·
· · ·
· · ·

Memory

Compute Device 0 (Platform 1)

· · ·
· · ·
· · ·

Memory

Compute Device 1 (Platform 1)

· · ·
· · ·
· · ·

Memory

Platform 0 (e.g. CPUs)

Platform 1 (e.g. GPUs)

(think “chip”,
has memory
interface)

Compute Unit
(think “processor”,
has insn. fetch)

Processing Element
(think “SIMD lane”)

Python

Device Language: ∼ C99

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL OpenCL from Python Implementations Python, Numpy GPUs OpenCL

OpenCL: Computing as a Service

Host
(CPU)

Memory

Compute Device 0 (Platform 0)

· · ·
· · ·
· · ·

Memory

Compute Device 1 (Platform 0)

· · ·
· · ·
· · ·

Memory

Compute Device 0 (Platform 1)

· · ·
· · ·
· · ·

Memory

Compute Device 1 (Platform 1)

· · ·
· · ·
· · ·

Memory

Platform 0 (e.g. CPUs)

Platform 1 (e.g. GPUs)

(think “chip”,
has memory
interface)

Compute Unit
(think “processor”,
has insn. fetch)

Processing Element
(think “SIMD lane”)

Python

Device Language: ∼ C99

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL OpenCL from Python Implementations Python, Numpy GPUs OpenCL

OpenCL: Computing as a Service

Host
(CPU)

Memory

Compute Device 0 (Platform 0)

· · ·
· · ·
· · ·

Memory

Compute Device 1 (Platform 0)

· · ·
· · ·
· · ·

Memory

Compute Device 0 (Platform 1)

· · ·
· · ·
· · ·

Memory

Compute Device 1 (Platform 1)

· · ·
· · ·
· · ·

Memory

Platform 0 (e.g. CPUs)

Platform 1 (e.g. GPUs)

(think “chip”,
has memory
interface)

Compute Unit
(think “processor”,
has insn. fetch)

Processing Element
(think “SIMD lane”)

Python

Device Language: ∼ C99

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL OpenCL from Python Implementations Python, Numpy GPUs OpenCL

OpenCL: Computing as a Service

Host
(CPU)

Memory

Compute Device 0 (Platform 0)

· · ·
· · ·
· · ·

Memory

Compute Device 1 (Platform 0)

· · ·
· · ·
· · ·

Memory

Compute Device 0 (Platform 1)

· · ·
· · ·
· · ·

Memory

Compute Device 1 (Platform 1)

· · ·
· · ·
· · ·

Memory

Platform 0 (e.g. CPUs)

Platform 1 (e.g. GPUs)

(think “chip”,
has memory
interface)

Compute Unit
(think “processor”,
has insn. fetch)

Processing Element
(think “SIMD lane”)

Python

Device Language: ∼ C99

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL OpenCL from Python Implementations Python, Numpy GPUs OpenCL

OpenCL: Computing as a Service

Host
(CPU)

Memory

Compute Device 0 (Platform 0)

· · ·
· · ·
· · ·

Memory

Compute Device 1 (Platform 0)

· · ·
· · ·
· · ·

Memory

Compute Device 0 (Platform 1)

· · ·
· · ·
· · ·

Memory

Compute Device 1 (Platform 1)

· · ·
· · ·
· · ·

Memory

Platform 0 (e.g. CPUs)

Platform 1 (e.g. GPUs)

(think “chip”,
has memory
interface)

Compute Unit
(think “processor”,
has insn. fetch)

Processing Element
(think “SIMD lane”)

Python

Device Language: ∼ C99

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL OpenCL from Python Implementations Python, Numpy GPUs OpenCL

Why do Scripting for GPUs?

GPUs are everything that scripting
languages are not.

Highly parallel
Very architecture-sensitive
Built for maximum FP/memory
throughput

→ complement each other

CPU: largely restricted to control
tasks (∼1000/sec)

Scripting fast enough

Python + CUDA = PyCUDA

Python + OpenCL = PyOpenCL

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL OpenCL from Python Implementations First Contact About PyOpenCL

Outline

1 Intro: Python, Numpy, GPUs, OpenCL

2 GPU Programming with PyOpenCL
First Contact
About PyOpenCL

3 OpenCL viewed from Python

4 OpenCL implementations

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL OpenCL from Python Implementations First Contact About PyOpenCL

Outline

1 Intro: Python, Numpy, GPUs, OpenCL

2 GPU Programming with PyOpenCL
First Contact
About PyOpenCL

3 OpenCL viewed from Python

4 OpenCL implementations

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL OpenCL from Python Implementations First Contact About PyOpenCL

Dive into PyOpenCL

1 import pyopencl as cl , numpy
2
3 a = numpy.random.rand(256∗∗3).astype(numpy.float32)
4
5 ctx = cl. create some context()
6 queue = cl.CommandQueue(ctx)
7
8 a dev = cl. Buffer(ctx , cl .mem flags.READ WRITE, size=a.nbytes)
9 cl .enqueue copy(queue, a dev, a)

10
11 prg = cl.Program(ctx, ”””
12 kernel void twice(global float ∗a)
13 { a[get global id (0)] ∗= 2; }
14 ”””). build ()
15
16 prg. twice(queue, a.shape, (1,), a dev)

Compute kernel

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL OpenCL from Python Implementations First Contact About PyOpenCL

Dive into PyOpenCL

1 import pyopencl as cl , numpy
2
3 a = numpy.random.rand(256∗∗3).astype(numpy.float32)
4
5 ctx = cl. create some context()
6 queue = cl.CommandQueue(ctx)
7
8 a dev = cl. Buffer(ctx , cl .mem flags.READ WRITE, size=a.nbytes)
9 cl .enqueue copy(queue, a dev, a)

10
11 prg = cl.Program(ctx, ”””
12 kernel void twice(global float ∗a)
13 { a[get global id (0)] ∗= 2; }
14 ”””). build ()
15
16 prg. twice(queue, a.shape, (1,), a dev)

Compute kernel

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL OpenCL from Python Implementations First Contact About PyOpenCL

Dive into PyOpenCL: Getting Results

8 a dev = cl. Buffer(ctx , cl .mem flags.READ WRITE, size=a.nbytes)
9 cl .enqueue copy(queue, a dev, a)

10
11 prg = cl.Program(ctx, ”””
12 kernel void twice(global float ∗a)
13 { a[get global id (0)] ∗= 2; }
14 ”””). build ()
15
16 prg. twice(queue, a.shape, (1,), a dev)
17
18 result = numpy.empty like(a)
19 cl .enqueue copy(queue, result , a dev)
20 import numpy.linalg as la
21 assert la .norm(result − 2∗a) == 0

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL OpenCL from Python Implementations First Contact About PyOpenCL

Dive into PyOpenCL: Grouping

8 a dev = cl. Buffer(ctx , cl .mem flags.READ WRITE, size=a.nbytes)
9 cl .enqueue copy(queue, a dev, a)

10
11 prg = cl.Program(ctx, ”””
12 kernel void twice(global float ∗a)
13 { a[get local id (0)+ get local size (0)∗get group id (0)] ∗= 2; }
14 ”””). build ()
15
16 prg. twice(queue, a.shape, (256,), a dev)
17
18 result = numpy.empty like(a)
19 cl .enqueue copy(queue, result , a dev)
20 import numpy.linalg as la
21 assert la .norm(result − 2∗a) == 0

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL OpenCL from Python Implementations First Contact About PyOpenCL

Dive into PyOpenCL: Thinking on your feet

Thinking about GPU programming

How would we modify the program to. . .

1 . . . compute ci = aibi?

2 . . . use groups of 16× 16 work items?

3 . . . benchmark 1 work item per group against 256 work items
per group? (Use time.time() and .wait().)

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL OpenCL from Python Implementations First Contact About PyOpenCL

Dive into PyOpenCL: Thinking on your feet

Thinking about GPU programming

How would we modify the program to. . .

1 . . . compute ci = aibi?

2 . . . use groups of 16× 16 work items?

3 . . . benchmark 1 work item per group against 256 work items
per group? (Use time.time() and .wait().)

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL OpenCL from Python Implementations First Contact About PyOpenCL

Dive into PyOpenCL: Thinking on your feet

Thinking about GPU programming

How would we modify the program to. . .

1 . . . compute ci = aibi?

2 . . . use groups of 16× 16 work items?

3 . . . benchmark 1 work item per group against 256 work items
per group? (Use time.time() and .wait().)

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL OpenCL from Python Implementations First Contact About PyOpenCL

Dive into PyOpenCL: Thinking on your feet

Thinking about GPU programming

How would we modify the program to. . .

1 . . . compute ci = aibi?

2 . . . use groups of 16× 16 work items?

3 . . . benchmark 1 work item per group against 256 work items
per group? (Use time.time() and .wait().)

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL OpenCL from Python Implementations First Contact About PyOpenCL

Outline

1 Intro: Python, Numpy, GPUs, OpenCL

2 GPU Programming with PyOpenCL
First Contact
About PyOpenCL

3 OpenCL viewed from Python

4 OpenCL implementations

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL OpenCL from Python Implementations First Contact About PyOpenCL

PyOpenCL Philosophy

Provide complete access

Automatically manage resources

Provide abstractions

Allow interactive use

Check for and report errors
automatically

Integrate tightly with numpy

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL OpenCL from Python Implementations First Contact About PyOpenCL

PyOpenCL: Completeness

PyOpenCL exposes all of OpenCL.

For example:

Every GetInfo() query

Images and Samplers

Memory Maps

Profiling and Synchronization

GL Interop

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL OpenCL from Python Implementations First Contact About PyOpenCL

PyOpenCL: Completeness

PyOpenCL supports (nearly)
every OS that has an OpenCL
implementation.

Linux

OS X

Windows

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL OpenCL from Python Implementations First Contact About PyOpenCL

Automatic Cleanup

Reachable objects (memory,
streams, . . .) are never destroyed.

Once unreachable, released at an
unspecified future time.

Scarce resources (memory) can be
explicitly freed. (obj.release())

Correctly deals with multiple
contexts and dependencies. (based
on OpenCL’s reference counting)

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL OpenCL from Python Implementations First Contact About PyOpenCL

PyOpenCL: Documentation

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL OpenCL from Python Implementations First Contact About PyOpenCL

Scripting: Interpreted, not Compiled

Program creation workflow:

Edit

Compile

Link

Run

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL OpenCL from Python Implementations First Contact About PyOpenCL

Scripting: Interpreted, not Compiled

Program creation workflow:

Edit

Compile

Link

Run

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL OpenCL from Python Implementations First Contact About PyOpenCL

Scripting: Interpreted, not Compiled

Program creation workflow:

Edit

Compile

Link

Run

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL OpenCL from Python Implementations First Contact About PyOpenCL

PyOpenCL, PyCUDA: Workflow

Edit

PyOpenCL/PyCUDA

Run

Program("...")

Cache?

Compiler

no

Binary

Upload to GPU

Run on GPU

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL OpenCL from Python Implementations First Contact About PyOpenCL

PyOpenCL: Vital Information

http://mathema.tician.de/
software/pyopencl

Downloaded 30k+ times

Complete documentation

MIT License
(no warranty, free for all use)

Requires: numpy, Python 2.4+.

Community: mailing list, wiki

Add-on packages (e.g. PyFFT, Sailfish,
PyWENO)

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

http://mathema.tician.de/software/pyopencl
http://mathema.tician.de/software/pyopencl

Intro PyOpenCL OpenCL from Python Implementations First Contact About PyOpenCL

An Appetizer

Remember your first PyOpenCL program?

Abstraction is good:

1 import numpy
2 import pyopencl as cl
3 import pyopencl.array as cl array
4
5 ctx = cl. create some context()
6 queue = cl.CommandQueue(ctx)
7
8 a gpu = cl array . to device (
9 ctx , queue, numpy.random.randn(4,4).astype(numpy.float32))

10 a doubled = (2∗a gpu).get()
11 print a doubled
12 print a gpu

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL OpenCL from Python Implementations First Contact About PyOpenCL

pyopencl.array: Simple Linear Algebra

pyopencl.array.Array:

Meant to look and feel just like numpy.

p.a.to device(ctx, queue, numpy array)

numpy array = ary.get()

+, -, ∗, /, fill, sin, arange, exp, rand, . . .

Mixed types (int32 + float32 = float64)

print cl array for debugging.

Allows access to raw bits

Use as kernel arguments, memory maps

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL OpenCL from Python Implementations First Contact About PyOpenCL

pyopencl.elementwise: Elementwise expressions

Avoiding extra store-fetch cycles for elementwise math:

n = 10000
a gpu = cl array . to device (

ctx , queue, numpy.random.randn(n).astype(numpy.float32))
b gpu = cl array . to device (

ctx , queue, numpy.random.randn(n).astype(numpy.float32))

from pyopencl.elementwise import ElementwiseKernel
lin comb = ElementwiseKernel(ctx,

” float a, float ∗x, float b, float ∗y, float ∗z”,
”z[i] = a∗x[i] + b∗y[i]”)

c gpu = cl array . empty like (a gpu)
lin comb(5, a gpu, 6, b gpu, c gpu)

import numpy.linalg as la
assert la .norm((c gpu − (5∗a gpu+6∗b gpu)).get()) < 1e−5

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL OpenCL from Python Implementations First Contact About PyOpenCL

pyopencl.reduction: Reduction made easy

Example: A dot product calculation

from pyopencl.reduction import ReductionKernel
dot = ReductionKernel(ctx, dtype out=numpy.float32, neutral=”0”,

reduce expr=”a+b”, map expr=”x[i]∗y[i]”,
arguments=” global const float ∗x, global const float ∗y”)

import pyopencl.clrandom as cl rand
x = cl rand.rand(ctx , queue, (1000∗1000), dtype=numpy.float32)
y = cl rand.rand(ctx , queue, (1000∗1000), dtype=numpy.float32)

x dot y = dot(x, y). get()
x dot y cpu = numpy.dot(x.get(), y.get())

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL OpenCL from Python Implementations First Contact About PyOpenCL

pyopencl.scan: Scan made easy

Example: A cumulative sum computation

from pyopencl.scan import InclusiveScanKernel
knl = InclusiveScanKernel(ctx , np.int32 , ”a+b”)

n = 2∗∗20−2∗∗18+5
host data = np.random.randint(0, 10, n).astype(np.int32)
dev data = cl array . to device (queue, host data)

knl(dev data)
assert (dev data.get() == np.cumsum(host data, axis=0)).all()

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL OpenCL from Python Implementations First Contact About PyOpenCL

Questions?

?

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL OpenCL from Python Implementations Device Language Runtime Synchronization Extensions

Outline

1 Intro: Python, Numpy, GPUs, OpenCL

2 GPU Programming with PyOpenCL

3 OpenCL viewed from Python
Device Language
The OpenCL runtime
Synchronization
Extensions

4 OpenCL implementations

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL OpenCL from Python Implementations Device Language Runtime Synchronization Extensions

Measuring Performance

Writing high-performance Codes

Mindset: What is going to be the limiting factor?

Floating point throughput?

Memory bandwidth?

Cache sizes?

Benchmark the assumed limiting factor right away.

Evaluate

Know your peak throughputs (roughly)

Are you getting close?

Are you tracking the right limiting factor?

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL OpenCL from Python Implementations Device Language Runtime Synchronization Extensions

Measuring Performance

Writing high-performance Codes

Mindset: What is going to be the limiting factor?

Floating point throughput?

Memory bandwidth?

Cache sizes?

Benchmark the assumed limiting factor right away.

Evaluate

Know your peak throughputs (roughly)

Are you getting close?

Are you tracking the right limiting factor?

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL OpenCL from Python Implementations Device Language Runtime Synchronization Extensions

Measuring Performance

Writing high-performance Codes

Mindset: What is going to be the limiting factor?

Floating point throughput?

Memory bandwidth?

Cache sizes?

Benchmark the assumed limiting factor right away.

Evaluate

Know your peak throughputs (roughly)

Are you getting close?

Are you tracking the right limiting factor?

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL OpenCL from Python Implementations Device Language Runtime Synchronization Extensions

Outline

1 Intro: Python, Numpy, GPUs, OpenCL

2 GPU Programming with PyOpenCL

3 OpenCL viewed from Python
Device Language
The OpenCL runtime
Synchronization
Extensions

4 OpenCL implementations

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL OpenCL from Python Implementations Device Language Runtime Synchronization Extensions

OpenCL Device Language

OpenCL device language is C99, with these
differences:

+ Index getters
+ Memory space qualifiers
+ Vector data types
+ Many generic (‘overloaded’) math functions
including fast native ... varieties.
+ Synchronization
- Recursion
- malloc()

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL OpenCL from Python Implementations Device Language Runtime Synchronization Extensions

Address Space Qualifiers

Type Per Access Latency
private work item R/W 1 or 1000
local group R/W 2
global grid R/W 1000 Cached?
constant grid R/O 1-1000 Cached
imagend t grid R(/W) 1000 Spatially cached

Important

Different types of memory are good at different types of access.
Successful algorithms combine many types’ strengths.

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL OpenCL from Python Implementations Device Language Runtime Synchronization Extensions

Address Space Qualifiers

Type Per Access Latency
private work item R/W 1 or 1000
local group R/W 2
global grid R/W 1000 Cached?
constant grid R/O 1-1000 Cached
imagend t grid R(/W) 1000 Spatially cached

Important

Different types of memory are good at different types of access.
Successful algorithms combine many types’ strengths.

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL OpenCL from Python Implementations Device Language Runtime Synchronization Extensions

Address Space Qualifiers

Type Per Access Latency
private work item R/W 1 or 1000
local group R/W 2
global grid R/W 1000 Cached?
constant grid R/O 1-1000 Cached
imagend t grid R(/W) 1000 Spatially cached

Important

Different types of memory are good at different types of access.
Successful algorithms combine many types’ strengths.

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL OpenCL from Python Implementations Device Language Runtime Synchronization Extensions

How does computer memory work?

One (reading) memory transaction (simplified):

Processor Memory

CLK

R/W̄

A0..15

D0..15

Observation: Access (and addressing) happens
in bus-width-size “chunks”.

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL OpenCL from Python Implementations Device Language Runtime Synchronization Extensions

How does computer memory work?

One (reading) memory transaction (simplified):

Processor Memory

CLK

R/W̄

A0..15

D0..15

Observation: Access (and addressing) happens
in bus-width-size “chunks”.

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL OpenCL from Python Implementations Device Language Runtime Synchronization Extensions

How does computer memory work?

One (reading) memory transaction (simplified):

Processor Memory

CLK

R/W̄

A0..15

D0..15

Observation: Access (and addressing) happens
in bus-width-size “chunks”.

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL OpenCL from Python Implementations Device Language Runtime Synchronization Extensions

How does computer memory work?

One (reading) memory transaction (simplified):

Processor Memory

CLK

R/W̄

A0..15

D0..15

Observation: Access (and addressing) happens
in bus-width-size “chunks”.

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL OpenCL from Python Implementations Device Language Runtime Synchronization Extensions

How does computer memory work?

One (reading) memory transaction (simplified):

Processor Memory

CLK

R/W̄

A0..15

D0..15

Observation: Access (and addressing) happens
in bus-width-size “chunks”.

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL OpenCL from Python Implementations Device Language Runtime Synchronization Extensions

How does computer memory work?

One (reading) memory transaction (simplified):

Processor Memory

CLK

R/W̄

A0..15

D0..15

Observation: Access (and addressing) happens
in bus-width-size “chunks”.

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL OpenCL from Python Implementations Device Language Runtime Synchronization Extensions

How does computer memory work?

One (reading) memory transaction (simplified):

Processor Memory

CLK

R/W̄

A0..15

D0..15

Observation: Access (and addressing) happens
in bus-width-size “chunks”.

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL OpenCL from Python Implementations Device Language Runtime Synchronization Extensions

Global Memory

Rule of thumb

n = min

(
Bus width in bits

Word size in bits
,SIMD group size

)
work items access global memory simultaneously. Full utilization
only if all bits in bus transaction are useful.

· · ·
n words

OK: global variable[get global id(0)]

(Single transaction)
Bad: global variable[5+get global id(0)]

(Two transactions)
Bad: global variable[2*get global id(0)]

(Two transactions)

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL OpenCL from Python Implementations Device Language Runtime Synchronization Extensions

Global Memory

Rule of thumb

n = min

(
Bus width in bits

Word size in bits
,SIMD group size

)
work items access global memory simultaneously. Full utilization
only if all bits in bus transaction are useful.

· · ·
n words

OK: global variable[get global id(0)]

(Single transaction)
Bad: global variable[5+get global id(0)]

(Two transactions)
Bad: global variable[2*get global id(0)]

(Two transactions)

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL OpenCL from Python Implementations Device Language Runtime Synchronization Extensions

Global Memory

Rule of thumb

n = min

(
Bus width in bits

Word size in bits
,SIMD group size

)
work items access global memory simultaneously. Full utilization
only if all bits in bus transaction are useful.

· · ·
n words

OK: global variable[get global id(0)]

(Single transaction)

Bad: global variable[5+get global id(0)]

(Two transactions)
Bad: global variable[2*get global id(0)]

(Two transactions)

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL OpenCL from Python Implementations Device Language Runtime Synchronization Extensions

Global Memory

Rule of thumb

n = min

(
Bus width in bits

Word size in bits
,SIMD group size

)
work items access global memory simultaneously. Full utilization
only if all bits in bus transaction are useful.

· · ·
n words

OK: global variable[get global id(0)]

(Single transaction)

Bad: global variable[5+get global id(0)]

(Two transactions)

Bad: global variable[2*get global id(0)]

(Two transactions)

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL OpenCL from Python Implementations Device Language Runtime Synchronization Extensions

Global Memory

Rule of thumb

n = min

(
Bus width in bits

Word size in bits
,SIMD group size

)
work items access global memory simultaneously. Full utilization
only if all bits in bus transaction are useful.

· · ·
n words

OK: global variable[get global id(0)]

(Single transaction)
Bad: global variable[5+get global id(0)]

(Two transactions)
Bad: global variable[2*get global id(0)]

(Two transactions)

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL OpenCL from Python Implementations Device Language Runtime Synchronization Extensions

Global Memory

Rule of thumb

n = min

(
Bus width in bits

Word size in bits
,SIMD group size

)
work items access global memory simultaneously. Full utilization
only if all bits in bus transaction are useful.

· · ·
n words

OK: global variable[get global id(0)]

(Single transaction)
Bad: global variable[5+get global id(0)]

(Two transactions)
Bad: global variable[2*get global id(0)]

(Two transactions)

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL OpenCL from Python Implementations Device Language Runtime Synchronization Extensions

Global Memory

Rule of thumb

n = min

(
Bus width in bits

Word size in bits
,SIMD group size

)
work items access global memory simultaneously. Full utilization
only if all bits in bus transaction are useful.

· · ·
n words

OK: global variable[get global id(0)]

(Single transaction)
Bad: global variable[5+get global id(0)]

(Two transactions)

Bad: global variable[2*get global id(0)]

(Two transactions)

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL OpenCL from Python Implementations Device Language Runtime Synchronization Extensions

Making sense of Global Memory

Consider the following examples:

List of XYZ vectors:

XXXX. . . YYYY. . . ZZZZ. . . (“SoA”)
XYZXYZXYZ. . . (“AoS”)

Accessing a row-major (C order) matrix

by rows
by columns

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL OpenCL from Python Implementations Device Language Runtime Synchronization Extensions

Local Memory: Banking

0 4 8 12 16 20

· · ·

1 5 9 13 17 21

· · ·

2 6 10 14 18 22

· · ·

3 7 11 15 19 23

· · ·

Bank

Address

Work Item

0

1

2

3

OK: local variable[get local id(0)],
(Single cycle)
Bad: local variable[BANK COUNT*get local id(0)]

(BANK COUNT cycles)
OK: local variable[(BANK COUNT+1)*get local id(0)]

(Single cycle)
OK: local variable[ODD NUMBER*get local id(0)]

(Single cycle)
Bad: local variable[2*get local id(0)]

(BANK COUNT/2 cycles)
OK: local variable[f(get group id(0))]

(Broadcast–single cycle)

Example: Nvidia GT200 has 16 banks.
Work items access local memory in groups of 16.

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL OpenCL from Python Implementations Device Language Runtime Synchronization Extensions

Local Memory: Banking

0 4 8 12 16 20 · · ·

1 5 9 13 17 21 · · ·

2 6 10 14 18 22 · · ·

3 7 11 15 19 23 · · ·

Bank

Address

Work Item

0

1

2

3

OK: local variable[get local id(0)],
(Single cycle)
Bad: local variable[BANK COUNT*get local id(0)]

(BANK COUNT cycles)
OK: local variable[(BANK COUNT+1)*get local id(0)]

(Single cycle)
OK: local variable[ODD NUMBER*get local id(0)]

(Single cycle)
Bad: local variable[2*get local id(0)]

(BANK COUNT/2 cycles)
OK: local variable[f(get group id(0))]

(Broadcast–single cycle)

Example: Nvidia GT200 has 16 banks.
Work items access local memory in groups of 16.

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL OpenCL from Python Implementations Device Language Runtime Synchronization Extensions

Local Memory: Banking

0 4 8 12 16 20 · · ·

1 5 9 13 17 21 · · ·

2 6 10 14 18 22 · · ·

3 7 11 15 19 23 · · ·

Bank

Address

Work Item

0

1

2

3

OK: local variable[get local id(0)],
(Single cycle)
Bad: local variable[BANK COUNT*get local id(0)]

(BANK COUNT cycles)
OK: local variable[(BANK COUNT+1)*get local id(0)]

(Single cycle)
OK: local variable[ODD NUMBER*get local id(0)]

(Single cycle)
Bad: local variable[2*get local id(0)]

(BANK COUNT/2 cycles)
OK: local variable[f(get group id(0))]

(Broadcast–single cycle)

Example: Nvidia GT200 has 16 banks.
Work items access local memory in groups of 16.

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL OpenCL from Python Implementations Device Language Runtime Synchronization Extensions

Local Memory: Banking

0 4 8 12 16 20

· · ·

1 5 9 13 17 21

· · ·

2 6 10 14 18 22

· · ·

3 7 11 15 19 23

· · ·

Bank

Address

Work Item

0

1

2

3

OK: local variable[get local id(0)],
(Single cycle)

Bad: local variable[BANK COUNT*get local id(0)]

(BANK COUNT cycles)
OK: local variable[(BANK COUNT+1)*get local id(0)]

(Single cycle)
OK: local variable[ODD NUMBER*get local id(0)]

(Single cycle)
Bad: local variable[2*get local id(0)]

(BANK COUNT/2 cycles)
OK: local variable[f(get group id(0))]

(Broadcast–single cycle)

Example: Nvidia GT200 has 16 banks.
Work items access local memory in groups of 16.

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL OpenCL from Python Implementations Device Language Runtime Synchronization Extensions

Local Memory: Banking

0 4 8 12 16 20

· · ·

1 5 9 13 17 21

· · ·

2 6 10 14 18 22

· · ·

3 7 11 15 19 23

· · ·

Bank

Address

Work Item

0

1

2

3

OK: local variable[get local id(0)],
(Single cycle)

Bad: local variable[BANK COUNT*get local id(0)]

(BANK COUNT cycles)

OK: local variable[(BANK COUNT+1)*get local id(0)]

(Single cycle)
OK: local variable[ODD NUMBER*get local id(0)]

(Single cycle)
Bad: local variable[2*get local id(0)]

(BANK COUNT/2 cycles)
OK: local variable[f(get group id(0))]

(Broadcast–single cycle)

Example: Nvidia GT200 has 16 banks.
Work items access local memory in groups of 16.

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL OpenCL from Python Implementations Device Language Runtime Synchronization Extensions

Local Memory: Banking

0 4 8 12 16 20

· · ·

1 5 9 13 17 21

· · ·

2 6 10 14 18 22

· · ·

3 7 11 15 19 23

· · ·

Bank

Address

Work Item

0

1

2

3

OK: local variable[get local id(0)],
(Single cycle)
Bad: local variable[BANK COUNT*get local id(0)]

(BANK COUNT cycles)

OK: local variable[(BANK COUNT+1)*get local id(0)]

(Single cycle)

OK: local variable[ODD NUMBER*get local id(0)]

(Single cycle)
Bad: local variable[2*get local id(0)]

(BANK COUNT/2 cycles)
OK: local variable[f(get group id(0))]

(Broadcast–single cycle)

Example: Nvidia GT200 has 16 banks.
Work items access local memory in groups of 16.

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL OpenCL from Python Implementations Device Language Runtime Synchronization Extensions

Local Memory: Banking

0 4 8 12 16 20

· · ·

1 5 9 13 17 21

· · ·

2 6 10 14 18 22

· · ·

3 7 11 15 19 23

· · ·

Bank

Address

Work Item

0

1

2

3

OK: local variable[get local id(0)],
(Single cycle)
Bad: local variable[BANK COUNT*get local id(0)]

(BANK COUNT cycles)
OK: local variable[(BANK COUNT+1)*get local id(0)]

(Single cycle)

OK: local variable[ODD NUMBER*get local id(0)]

(Single cycle)

Bad: local variable[2*get local id(0)]

(BANK COUNT/2 cycles)
OK: local variable[f(get group id(0))]

(Broadcast–single cycle)

Example: Nvidia GT200 has 16 banks.
Work items access local memory in groups of 16.

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL OpenCL from Python Implementations Device Language Runtime Synchronization Extensions

Local Memory: Banking

0 4 8 12 16 20

· · ·

1 5 9 13 17 21

· · ·

2 6 10 14 18 22

· · ·

3 7 11 15 19 23

· · ·

Bank

Address

Work Item

0

1

2

3

OK: local variable[get local id(0)],
(Single cycle)
Bad: local variable[BANK COUNT*get local id(0)]

(BANK COUNT cycles)
OK: local variable[(BANK COUNT+1)*get local id(0)]

(Single cycle)
OK: local variable[ODD NUMBER*get local id(0)]

(Single cycle)

Bad: local variable[2*get local id(0)]

(BANK COUNT/2 cycles)

OK: local variable[f(get group id(0))]

(Broadcast–single cycle)

Example: Nvidia GT200 has 16 banks.
Work items access local memory in groups of 16.

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL OpenCL from Python Implementations Device Language Runtime Synchronization Extensions

Local Memory: Banking

0 4 8 12 16 20

· · ·

1 5 9 13 17 21

· · ·

2 6 10 14 18 22

· · ·

3 7 11 15 19 23

· · ·

Bank

Address

Work Item

0

1

2

3

OK: local variable[get local id(0)],
(Single cycle)
Bad: local variable[BANK COUNT*get local id(0)]

(BANK COUNT cycles)
OK: local variable[(BANK COUNT+1)*get local id(0)]

(Single cycle)
OK: local variable[ODD NUMBER*get local id(0)]

(Single cycle)
Bad: local variable[2*get local id(0)]

(BANK COUNT/2 cycles)

OK: local variable[f(get group id(0))]

(Broadcast–single cycle)

Example: Nvidia GT200 has 16 banks.
Work items access local memory in groups of 16.

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL OpenCL from Python Implementations Device Language Runtime Synchronization Extensions

Local Memory: Banking

0 4 8 12 16 20

· · ·

1 5 9 13 17 21

· · ·

2 6 10 14 18 22

· · ·

3 7 11 15 19 23

· · ·

Bank

Address

Work Item

0

1

2

3

OK: local variable[get local id(0)],
(Single cycle)
Bad: local variable[BANK COUNT*get local id(0)]

(BANK COUNT cycles)
OK: local variable[(BANK COUNT+1)*get local id(0)]

(Single cycle)
OK: local variable[ODD NUMBER*get local id(0)]

(Single cycle)
Bad: local variable[2*get local id(0)]

(BANK COUNT/2 cycles)
OK: local variable[f(get group id(0))]

(Broadcast–single cycle)

Example: Nvidia GT200 has 16 banks.
Work items access local memory in groups of 16.

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL OpenCL from Python Implementations Device Language Runtime Synchronization Extensions

CL vector data types

floatn vec (n=1,2,3,4,8,16) (also for
double and integer types) Components:

vec.s012...abcdef (or xyzw)

vec.s3120 (Swizzling)

vec.s024 = (float3)(1,2,3);

(Lvalue, Literals)

Usage:

Elementwise operations (+,-,sin
(generic!),...)

floatn vloadn/vstoren(offset,
float *) (aligned!)

dot/distance

Using CPU implementation: One of the
sanest ways of using SSE/vector intrinsics!

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL OpenCL from Python Implementations Device Language Runtime Synchronization Extensions

Outline

1 Intro: Python, Numpy, GPUs, OpenCL

2 GPU Programming with PyOpenCL

3 OpenCL viewed from Python
Device Language
The OpenCL runtime
Synchronization
Extensions

4 OpenCL implementations

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL OpenCL from Python Implementations Device Language Runtime Synchronization Extensions

OpenCL Object Diagram

Last Revision Date: 9/30/10 Page 20

Figure 2.1 - OpenCL UML Class Diagram

Credit: Khronos Group

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL OpenCL from Python Implementations Device Language Runtime Synchronization Extensions

CL “Platform”

“Platform”: a collection of devices, all from
the same vendor.

All devices in a platform use same CL
driver/implementation.

Multiple platforms can be used from one
program → ICD.

libOpenCL.so: ICD loader

/etc/OpenCL/vendors/somename.icd:
Plain text file with name of .so containing
CL implementation.

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL OpenCL from Python Implementations Device Language Runtime Synchronization Extensions

CL “Compute Device”

CL Compute Devices:

CPUs, GPUs, accelerators, . . .

Anything that fits the programming model.

A processor die with an interface to off-chip
memory

Can get list of devices from platform.

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL OpenCL from Python Implementations Device Language Runtime Synchronization Extensions

Contexts

context = cl.Context(devices=None | [dev1, dev2], dev type=None)
context = cl. create some context(interactive =True)

Spans one or more Devices

Create from device type or list of devices

See docs for cl.Platform, cl.Device

dev type: DEFAULT , ALL, CPU, GPU

Needed to. . .

. . . allocate Memory Objects

. . . create and build Programs

. . . host Command Queues

. . . execute Grids

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL OpenCL from Python Implementations Device Language Runtime Synchronization Extensions

OpenCL: Command Queues

Host and Device run
asynchronously

Host submits to queue:

Computations
Memory Transfers
Sync primitives
. . .

Host can wait for
drained queue

Profiling

. . .
HostHost

DeviceDevice

Q
u

eu
e

1
Q

u
eu

e
1

Q
u

eu
e

2
Q

u
eu

e
2

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL OpenCL from Python Implementations Device Language Runtime Synchronization Extensions

Command Queues and Events

queue = cl.CommandQueue(context, device=None,
properties =None | [(prop, value),...])

Attached to single device

cl.command queue properties. . .

OUT OF ORDER EXEC MODE ENABLE:
Do not force sequential execution
PROFILING ENABLE:
Gather timing info

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL OpenCL from Python Implementations Device Language Runtime Synchronization Extensions

Building Blocks in Action

import pyopencl as cl

platforms = cl. get platforms ()
my platform = platforms[0]
print my platform.vendor

devices = my platform.get devices ()
my device = devices [0]
print my device.name

ctx = cl.Context([my device])

cpq = cl.command queue properties
queue = cl.CommandQueue(ctx, my device, cpq.PROFILING ENABLE)

Simple version:

ctx2 = cl. create some context()
queue2 = cl.CommandQueue(ctx)

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL OpenCL from Python Implementations Device Language Runtime Synchronization Extensions

Command Queues and Events

event = cl.enqueue XXX(queue, ..., wait for =[evt1, evt2])

Every enqueue operation returns an Event.

Also possible: Operation-less events
(“Markers”)

Wait (evt.wait()), polling

Specify dependencies

Every enqueue operation takes a list
arg wait for of dependencies.

Profile
event.profile.. . .

QUEUED, SUBMIT
START, END

(time stamp in ns)

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL OpenCL from Python Implementations Device Language Runtime Synchronization Extensions

Profiling example

start event = cl.enqueue marker(queue)

enqueue some commands

stop event = cl.enqueue marker(queue)
stop event .wait()

elapsed seconds = 1e−9∗(
start event . profile .END − start event. profile .END)

−−− OR −−−

op event = knl(queue, global size , grp size , args ...)
op event.wait()
elapsed seconds = 1e−9∗(

op event. profile .END − op event.profile.START)

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL OpenCL from Python Implementations Device Language Runtime Synchronization Extensions

Capturing Dependencies

B = f(A)
C = g(B)
E = f(C)
F = h(C)
G = g(E,F)
P = p(B)
Q = q(B)
R = r(G,P,Q)

A

C

B

E

G

F Q

P

R

h

r

g

rg

r

g

q

f

p

f

Switch queue to out-of-order
mode!

Specify as list of events using
wait for= optional keyword to
enqueue XXX.

Can also enqueue barrier.

Common use case:
Transmit/receive from other MPI
ranks.

Possible in hardware on Nv Fermi,
AMD Cayman: Submit parallel
work to increase machine use.

Not yet ubiquitously
implemented

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL OpenCL from Python Implementations Device Language Runtime Synchronization Extensions

Capturing Dependencies

B = f(A)
C = g(B)
E = f(C)
F = h(C)
G = g(E,F)
P = p(B)
Q = q(B)
R = r(G,P,Q)

A

C

B

E

G

F Q

P

R

h

r

g

rg

r

g

q

f

p

f

Switch queue to out-of-order
mode!

Specify as list of events using
wait for= optional keyword to
enqueue XXX.

Can also enqueue barrier.

Common use case:
Transmit/receive from other MPI
ranks.

Possible in hardware on Nv Fermi,
AMD Cayman: Submit parallel
work to increase machine use.

Not yet ubiquitously
implemented

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL OpenCL from Python Implementations Device Language Runtime Synchronization Extensions

Memory Objects: Buffers

buf = cl. Buffer(context , flags , size =0, hostbuf=None)

Chunk of device memory

No type information: “Bag of bytes”

Observe: Not tied to device.
→ no fixed memory address
→ pointers do not survive kernel launches
→ movable between devices

flags:

READ ONLY/WRITE ONLY/READ WRITE

{ALLOC,COPY,USE} HOST PTR

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL OpenCL from Python Implementations Device Language Runtime Synchronization Extensions

Memory Objects: Buffers

buf = cl. Buffer(context , flags , size =0, hostbuf=None)

COPY HOST PTR:

Use hostbuf as initial content of buffer

USE HOST PTR:

hostbuf is the buffer.

Caching in device memory is allowed.

ALLOC HOST PTR:

New host memory (unrelated to
hostbuf) is visible from device and host.

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL OpenCL from Python Implementations Device Language Runtime Synchronization Extensions

Memory Objects: Buffers

buf = cl. Buffer(context , flags , size =0, hostbuf=None)

Specify hostbuf or size (or both)

hostbuf: Needs Python Buffer Interface
e.g. numpy.ndarray, str.

Important: Memory layout matters

Passed to device code as pointers
(e.g. float *, int *)

enqueue copy(queue, dest, src)

Can be mapped into host address space:
cl.MemoryMap.

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL OpenCL from Python Implementations Device Language Runtime Synchronization Extensions

Command Queues and Buffers: A Crashy Puzzle

4 OK

(usually!)

a = numpy.random.rand(256∗∗3).astype(numpy.float32)
a dev = cl. Buffer(ctx , cl .mem flags.READ WRITE, size=a.nbytes)
cl .enqueue copy(queue, a dev, a,

is blocking =False)

6 Crash

a dev = cl. Buffer(ctx , cl .mem flags.READ WRITE, size=256∗∗3∗4)
cl .enqueue copy(queue, a dev,

numpy.random.rand(256∗∗3).astype(numpy.float32),
is blocking =False)

4 OK

a dev = cl. Buffer(ctx , cl .mem flags.READ WRITE, size=256∗∗3∗4)
cl .enqueue copy(queue, a dev,

numpy.random.rand(256∗∗3).astype(numpy.float32),
is blocking =True)

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL OpenCL from Python Implementations Device Language Runtime Synchronization Extensions

Command Queues and Buffers: A Crashy Puzzle

4 OK

(usually!)

a = numpy.random.rand(256∗∗3).astype(numpy.float32)
a dev = cl. Buffer(ctx , cl .mem flags.READ WRITE, size=a.nbytes)
cl .enqueue copy(queue, a dev, a,

is blocking =False)

6 Crash

a dev = cl. Buffer(ctx , cl .mem flags.READ WRITE, size=256∗∗3∗4)
cl .enqueue copy(queue, a dev,

numpy.random.rand(256∗∗3).astype(numpy.float32),
is blocking =False)

4 OK

a dev = cl. Buffer(ctx , cl .mem flags.READ WRITE, size=256∗∗3∗4)
cl .enqueue copy(queue, a dev,

numpy.random.rand(256∗∗3).astype(numpy.float32),
is blocking =True)

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL OpenCL from Python Implementations Device Language Runtime Synchronization Extensions

Command Queues and Buffers: A Crashy Puzzle

4 OK

(usually!)

a = numpy.random.rand(256∗∗3).astype(numpy.float32)
a dev = cl. Buffer(ctx , cl .mem flags.READ WRITE, size=a.nbytes)
cl .enqueue copy(queue, a dev, a,

is blocking =False)

6 Crash

a dev = cl. Buffer(ctx , cl .mem flags.READ WRITE, size=256∗∗3∗4)
cl .enqueue copy(queue, a dev,

numpy.random.rand(256∗∗3).astype(numpy.float32),
is blocking =False)

4 OK

a dev = cl. Buffer(ctx , cl .mem flags.READ WRITE, size=256∗∗3∗4)
cl .enqueue copy(queue, a dev,

numpy.random.rand(256∗∗3).astype(numpy.float32),
is blocking =True)

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL OpenCL from Python Implementations Device Language Runtime Synchronization Extensions

Command Queues and Buffers: A Crashy Puzzle

4 OK (usually!)

a = numpy.random.rand(256∗∗3).astype(numpy.float32)
a dev = cl. Buffer(ctx , cl .mem flags.READ WRITE, size=a.nbytes)
cl .enqueue copy(queue, a dev, a,

is blocking =False)

6 Crash

a dev = cl. Buffer(ctx , cl .mem flags.READ WRITE, size=256∗∗3∗4)
cl .enqueue copy(queue, a dev,

numpy.random.rand(256∗∗3).astype(numpy.float32),
is blocking =False)

4 OK

a dev = cl. Buffer(ctx , cl .mem flags.READ WRITE, size=256∗∗3∗4)
cl .enqueue copy(queue, a dev,

numpy.random.rand(256∗∗3).astype(numpy.float32),
is blocking =True)

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL OpenCL from Python Implementations Device Language Runtime Synchronization Extensions

Programs and Kernels

prg = cl.Program(context, src)

src: OpenCL device code

Derivative of C99
Functions with kernel attribute
can be invoked from host

prg.build(options="",

devices=None)

kernel = prg.kernel name

kernel(queue,

(Gx ,Gy ,Gz), (Lx , Ly , Lz),
arg, ...,

wait for=None)

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL OpenCL from Python Implementations Device Language Runtime Synchronization Extensions

Program Objects

kernel (queue, (Gx,Gy,Gz), (Sx,Sy,Sz), arg , ..., wait for =None)

arg may be:

None (a NULL pointer)

numpy sized scalars:
numpy.int64,numpy.float32,...

Anything with buffer interface:
numpy.ndarray, str

Buffer Objects

Also: cl.Image, cl.Sampler,
cl.LocalMemory

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL OpenCL from Python Implementations Device Language Runtime Synchronization Extensions

Program Objects

kernel (queue, (Gx,Gy,Gz), (Sx,Sy,Sz), arg , ..., wait for =None)

Explicitly sized scalars:
6 Annoying, error-prone.

Better:
kernel.set scalar arg dtypes([

numpy.int32, None,

numpy.float32])

Use None for non-scalars.

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL OpenCL from Python Implementations Device Language Runtime Synchronization Extensions

OpenCL Object Diagram

Last Revision Date: 9/30/10 Page 20

Figure 2.1 - OpenCL UML Class Diagram

Credit: Khronos Group

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL OpenCL from Python Implementations Device Language Runtime Synchronization Extensions

Outline

1 Intro: Python, Numpy, GPUs, OpenCL

2 GPU Programming with PyOpenCL

3 OpenCL viewed from Python
Device Language
The OpenCL runtime
Synchronization
Extensions

4 OpenCL implementations

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL OpenCL from Python Implementations Device Language Runtime Synchronization Extensions

Recap: Concurrency and Synchronization

GPUs have layers of concurrency.
Each layer has its synchronization primitives.

Intra-group:
barrier(...),
mem fence(...)

... =
CLK {LOCAL,GLOBAL} MEM FENCE

Inter-group:
Kernel launch

CPU-GPU:
Command queues, Events

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL OpenCL from Python Implementations Device Language Runtime Synchronization Extensions

Recap: Concurrency and Synchronization

GPUs have layers of concurrency.
Each layer has its synchronization primitives.

Intra-group:
barrier(...),
mem fence(...)

... =
CLK {LOCAL,GLOBAL} MEM FENCE

Inter-group:
Kernel launch

CPU-GPU:
Command queues, Events

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL OpenCL from Python Implementations Device Language Runtime Synchronization Extensions

Synchronization between Groups

Golden Rule:

Results of the algorithm must be independent of the order in which
work groups are executed.

Consequences:

Work groups may read the same information from global
memory.

But: Two work groups may not validly write different things
to the same global memory.

Kernel launch serves as

Global barrier
Global memory fence

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL OpenCL from Python Implementations Device Language Runtime Synchronization Extensions

Synchronization between Groups

Golden Rule:

Results of the algorithm must be independent of the order in which
work groups are executed.

Consequences:

Work groups may read the same information from global
memory.

But: Two work groups may not validly write different things
to the same global memory.

Kernel launch serves as

Global barrier
Global memory fence

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL OpenCL from Python Implementations Device Language Runtime Synchronization Extensions

Synchronization

What is a Barrier?

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL OpenCL from Python Implementations Device Language Runtime Synchronization Extensions

Synchronization

What is a Barrier?

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL OpenCL from Python Implementations Device Language Runtime Synchronization Extensions

Synchronization

What is a Barrier?

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL OpenCL from Python Implementations Device Language Runtime Synchronization Extensions

Synchronization

What is a Barrier?

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL OpenCL from Python Implementations Device Language Runtime Synchronization Extensions

Synchronization

What is a Barrier?

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL OpenCL from Python Implementations Device Language Runtime Synchronization Extensions

Synchronization

What is a Barrier?

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL OpenCL from Python Implementations Device Language Runtime Synchronization Extensions

Synchronization

What is a Barrier?

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL OpenCL from Python Implementations Device Language Runtime Synchronization Extensions

Synchronization

What is a Memory Fence?

17

write 18
read

17

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL OpenCL from Python Implementations Device Language Runtime Synchronization Extensions

Synchronization

What is a Memory Fence?

17

write 18

read
17

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL OpenCL from Python Implementations Device Language Runtime Synchronization Extensions

Synchronization

What is a Memory Fence?

17

write 18
read

17

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL OpenCL from Python Implementations Device Language Runtime Synchronization Extensions

Synchronization

What is a Memory Fence?

17

write 18
read

17

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL OpenCL from Python Implementations Device Language Runtime Synchronization Extensions

Synchronization

What is a Memory Fence?

17

write 18

read
17

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL OpenCL from Python Implementations Device Language Runtime Synchronization Extensions

Synchronization

What is a Memory Fence?

18

write 18

read
17

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL OpenCL from Python Implementations Device Language Runtime Synchronization Extensions

Synchronization

What is a Memory Fence?

18

write 18
read

17

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL OpenCL from Python Implementations Device Language Runtime Synchronization Extensions

Synchronization

What is a Memory Fence? An ordering restriction for memory
access.

17

write 18

read
18

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL OpenCL from Python Implementations Device Language Runtime Synchronization Extensions

Synchronization

What is a Memory Fence? An ordering restriction for memory
access.

17

write 18

read
18

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL OpenCL from Python Implementations Device Language Runtime Synchronization Extensions

Synchronization

What is a Memory Fence? An ordering restriction for memory
access.

17

write 18

read
18

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL OpenCL from Python Implementations Device Language Runtime Synchronization Extensions

Synchronization

What is a Memory Fence? An ordering restriction for memory
access.

17

write 18

read
18

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL OpenCL from Python Implementations Device Language Runtime Synchronization Extensions

Synchronization

What is a Memory Fence? An ordering restriction for memory
access.

18

write 18

read
18

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL OpenCL from Python Implementations Device Language Runtime Synchronization Extensions

Synchronization

What is a Memory Fence? An ordering restriction for memory
access.

18

write 18

read
18

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL OpenCL from Python Implementations Device Language Runtime Synchronization Extensions

Synchronization

What is a Memory Fence? An ordering restriction for memory
access.

18

write 18

read

18

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL OpenCL from Python Implementations Device Language Runtime Synchronization Extensions

Synchronization

What is a Memory Fence? An ordering restriction for memory
access.

18

write 18

read
18

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL OpenCL from Python Implementations Device Language Runtime Synchronization Extensions

Atomic Operations

Collaborative (inter-block) Global Memory Update:

Read Increment Write

Interruptible! Interruptible!

Atomic Global Memory Update:

Read Increment Write

Protected Protected

How?
atomic {add,inc,cmpxchg,. . . }(int *global, int value);

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL OpenCL from Python Implementations Device Language Runtime Synchronization Extensions

Atomic Operations

Collaborative (inter-block) Global Memory Update:

Read Increment Write

Interruptible!

Interruptible!

Atomic Global Memory Update:

Read Increment Write

Protected Protected

How?
atomic {add,inc,cmpxchg,. . . }(int *global, int value);

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL OpenCL from Python Implementations Device Language Runtime Synchronization Extensions

Atomic Operations

Collaborative (inter-block) Global Memory Update:

Read Increment Write

Interruptible! Interruptible!

Atomic Global Memory Update:

Read Increment Write

Protected Protected

How?
atomic {add,inc,cmpxchg,. . . }(int *global, int value);

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL OpenCL from Python Implementations Device Language Runtime Synchronization Extensions

Atomic Operations

Collaborative (inter-block) Global Memory Update:

Read Increment Write

Interruptible! Interruptible!

Atomic Global Memory Update:

Read Increment Write

Protected Protected

How?
atomic {add,inc,cmpxchg,. . . }(int *global, int value);

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL OpenCL from Python Implementations Device Language Runtime Synchronization Extensions

Atomic Operations

Collaborative (inter-block) Global Memory Update:

Read Increment Write

Interruptible! Interruptible!

Atomic Global Memory Update:

Read Increment Write

Protected

Protected

How?
atomic {add,inc,cmpxchg,. . . }(int *global, int value);

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL OpenCL from Python Implementations Device Language Runtime Synchronization Extensions

Atomic Operations

Collaborative (inter-block) Global Memory Update:

Read Increment Write

Interruptible! Interruptible!

Atomic Global Memory Update:

Read Increment Write

Protected Protected

How?
atomic {add,inc,cmpxchg,. . . }(int *global, int value);

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL OpenCL from Python Implementations Device Language Runtime Synchronization Extensions

Atomic Operations

Collaborative (inter-block) Global Memory Update:

Read Increment Write

Interruptible! Interruptible!

Atomic Global Memory Update:

Read Increment Write

Protected Protected

How?
atomic {add,inc,cmpxchg,. . . }(int *global, int value);

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL OpenCL from Python Implementations Device Language Runtime Synchronization Extensions

Outline

1 Intro: Python, Numpy, GPUs, OpenCL

2 GPU Programming with PyOpenCL

3 OpenCL viewed from Python
Device Language
The OpenCL runtime
Synchronization
Extensions

4 OpenCL implementations

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL OpenCL from Python Implementations Device Language Runtime Synchronization Extensions

Extensions: Future-proof CL

Similar extensions mechanism to
OpenGL.

Two mechanisms:

Runtime:

cl ext.h header
availability checkable via #ifdef

device.extensions

Device language:
#pragma OPENCL EXTENSION

name : enable

Important extension:

cl khr fp64

Vendor and ‘official’ extensions.

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL OpenCL from Python Implementations Device Language Runtime Synchronization Extensions

Extension Example: cl ext migrate memobject

CL Memory Objects (Buffers,
Images) tied to context, not device

CL Standard: Implicit migration of
data to location of use

Compliant implementations are
allowed to store all data on host,
transfer out just for kernel

With migration extension:

Migration becomes schedulable,
takes part in command queue
More control over data locality

4 Supported by PyOpenCL

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL OpenCL from Python Implementations Device Language Runtime Synchronization Extensions

Extension Example: cl ext device fission

Can partition a compute device

Equally
By name, counts
By affinity domain (Ln cache,
NUMA

Help avoid starvation of processes
that need a certain minimum
throughput.

Makes two-kernel
producer-consumer model feasible.

Otherwise: No guarantee of
progress!

Available on Intel, AMD
(CPU+GPU!)

4 Supported by PyOpenCL

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL OpenCL from Python Implementations

Outline

1 Intro: Python, Numpy, GPUs, OpenCL

2 GPU Programming with PyOpenCL

3 OpenCL viewed from Python

4 OpenCL implementations

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL OpenCL from Python Implementations

The Nvidia CL implementation

Targets only GPUs

Notes:

Nearly identical to CUDA

No native C-level JIT in CUDA (→
PyCUDA)

Page-locked memory:
Use CL MEM ALLOC HOST PTR.
(Careful: double meaning)

No linear memory texturing

CUDA device emulation mode deprecated
→ Use AMD CPU CL (faster, too!)

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL OpenCL from Python Implementations

The Apple CL implementation

Targets CPUs and GPUs

General notes:

Different header name
OpenCL/cl.h instead of CL/cl.h
Use -framework OpenCL for C
access.

Beware of imperfect compiler cache
implementation
(ignores include files)

CPU notes:

One work item per processor

GPU similar to hardware vendor
implementation.
(New: Intel w/ Sandy Bridge)

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL OpenCL from Python Implementations

The AMD CL implementation

Targets CPUs and GPUs (from both AMD and Nvidia)

GPU notes:

Wide SIMD groups (64)

VLIW4 (previously VLIW5)

very flop-heavy machine
→ ILP and explicit SIMD
Non-vector memory coalescing only on Cayman+

GCN: Vector and scalar unit

Move towards Nv-like programming model

CPU notes:

Many work items per processor (emulated)

cl amd printf

“APU”: CPU/GPU integration not very tight yet

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL OpenCL from Python Implementations

The Intel CL implementation

CPUs now, GPUs with Ivy Bridge+

CPU notes:

Good vectorizing compiler

Only implementation of out-of-order queues
for now

Based on Intel TBB

GPU notes:

Flexible design: SIMDm VLIWn

Lots of fixed-function hardware

Last-level Cache (LLC) integrated between
CPU and GPU

®

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL OpenCL from Python Implementations

The MOSIX Virtual CL implementation

Aggregates all CL devices on a cluster into a
single platform

Looks like a “regular” CL implementation to
the user

Obvious scaling limits, but useful if the
application is right

Just heard from author: PyOpenCL
supported as of version 1.10

Aggregates communication to avoid network
round-trips

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL OpenCL from Python Implementations

Questions?

?

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL OpenCL from Python Implementations

Image Credits

Isaiah die shot: VIA Technologies
Dictionary: sxc.hu/topfer
C870 GPU: Nvidia Corp.
Old Books: flickr.com/ppdigital
OpenCL Logo: Apple Corp./Ars Technica
OS Platforms: flickr.com/aOliN.Tk

Floppy disk: flickr.com/ethanhein

Adding Machine: flickr.com/thomashawk
Dominoes: sxc.hu/rolve
Context: sxc.hu/svilen001
Queue: sxc.hu/cobrasoft
Check mark: sxc.hu/bredmaker
RAM stick: sxc.hu/gobran11
CPU: sxc.hu/dimshik

Onions: flickr.com/darwinbell
Bricks: sxc.hu/guitargoa
Yellow-Billed Kite: sxc.hu/doc
Pie Chart: sxc.hu/miamiamia
Nvidia logo: Nvidia Corporation
Apple logo: Apple Corporation
AMD logo: AMD Corporation
Intel logo: Intel Corporation
Cluster: sxc.hu/svilen001

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

	Intro: Python, Numpy, GPUs, OpenCL
	Python, Numpy
	GPUs
	OpenCL

	GPU Programming with PyOpenCL
	First Contact
	About PyOpenCL

	OpenCL viewed from Python
	Device Language
	The OpenCL runtime
	Synchronization
	Extensions

	OpenCL implementations

