Accelerating interior point methods with GPUs for smart grid systems

Nicolai Fog Gade-Nielsen

Department of Informatics and Mathematical Modelling Technical University of Denmark

GPU Computing Today and Tomorrow, 2011
Technical University of Denmark

Outline

Introduction

2 Smart grid test case

Interior point method

Future plans

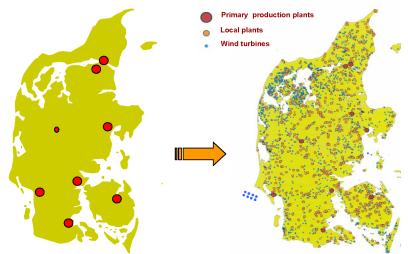
Introduction

- Ph.D. student at GPUlab, DTU IMM since November 2010.
 - Title: Scientific GPU Computing for Dynamical Optimization
 - Investigate GPUs for solving optimization problems, primarily model predictive control (MPC).
 - Initial test problem is distribution and control of electrical power via smart grid through the use of MPC.
- Completed M.Sc. at DTU IMM in October 2010:
 - Title: Implementation and evaluation of fast computational methods for high-resolution ODF problems on multi-core and many-core systems
 - Used GPUs for ray tracing and matrix-free SpMV.

What is a smart grid?

- Dynamically control energy production and consumption according to some objective, eg:
 - Increased use of uncontrollable renewable power such as wind and solar.
 - Lower production costs.
 - Lower CO2 production.
 - etc.
- Examples
 - Heat pump control in houses
 - Power plant production control

Power plants in Denmark



Centralized system of the mid 1980s

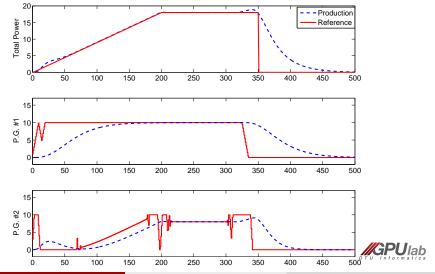
More decentralized system of today

Image credit: Economic MPC for Power Management in the Smart Grid | Tobias Gybel Hovgaard

Simple Economic MPC 1

- Prediction horizon of N time steps.
- \blacksquare N_p number of power plants with different properties.
- Properties on each power plant:
 - Response time.
 - Minimum and maximum change in one time step.
 - Minimum and maximum power production.
 - Cost.
- Simple example: Two power plants.
 - A cheap but slow power plant.
 - An expensive but fast power plant.

Simple Economic MPC example



Simple Economic MPC 2

Define power plant production as an economic MPC problem:

min
$$\phi = g's + c'x$$

s.t. $Ax - s = b$
 $s \ge 0$

- c is the cost and x is the control variables of each power plant in each time step.
- \blacksquare s is a slack variable and g is the cost of using it.
- A is our constraint matrix which encodes the constraints of each power plant and dynamics of the system. Very sparse and highly structured.
- Number of control variables: $N_p * N + N$

IPM Algorithm (without Predictor-Corrector)

- While not converged do
 - Compute duality gap.
 - Set centering parameter.
 - Compute residuals.
 - Solve newton step.

$$\begin{bmatrix} 0 & -A' & 0 \\ -A & 0 & I \\ 0 & S & \Lambda \end{bmatrix} \begin{bmatrix} \Delta x \\ \Delta \lambda \\ \Delta s \end{bmatrix} = - \begin{bmatrix} r_L \\ r_s \\ r_{\lambda} \end{bmatrix}$$
(1)

$$\begin{bmatrix} 0 & -A' \\ -A & -D^{-1} \end{bmatrix} \begin{bmatrix} \Delta x \\ \Delta \lambda \end{bmatrix} = -\begin{bmatrix} r_L \\ r_s - \Lambda^{-1} r_\lambda \end{bmatrix}$$

$$D = S^{-1} \Lambda$$
(2)

$$S = diag(s), \Lambda = diag(\lambda)$$

- Compute step length.
- Update step.

Solving the Newton step

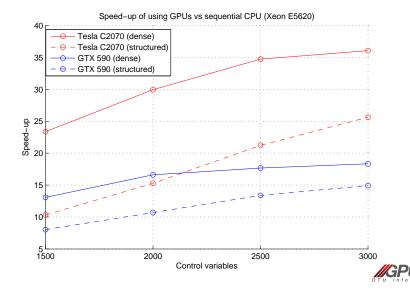
- Bottleneck: Solving the Newton step
- Normally solved with direct method:
 - Compute the Hessian matrix and use Cholesky factorization.

$$H_A = A^T(D)A$$

Cholesky: $H_A = LL^T$

- Implemented using CUBLAS and MAGMA.
- What is MAGMA?
 - The MAGMA project aims to develop a dense linear algebra library similar to LAPACK but for heterogeneous/hybrid architectures, starting with current "Multicore+GPU" systems."
 - Very fast Cholesky factorization.
 - Developed at University of Tennessee.

Results



Problems

- Ill-conditioning
 - Normal equations -> condition number squared

$$H_A = A^T(D)A$$

Cholesky: $H_A = LL^T$

■ In the later iterations of the IPM, either s_i or λ_i goes toward 0.

$$\begin{bmatrix} 0 & -A' & 0 \\ -A & 0 & I \\ 0 & S & \Lambda \end{bmatrix} \begin{bmatrix} \Delta x \\ \Delta \lambda \\ \Delta s \end{bmatrix} = - \begin{bmatrix} r_L \\ r_s \\ r_{\lambda} \end{bmatrix}$$
 (1)

$$\begin{bmatrix} 0 & -A' \\ -A & -D^{-1} \end{bmatrix} \begin{bmatrix} \Delta x \\ \Delta \lambda \end{bmatrix} = -\begin{bmatrix} r_L \\ r_s - \Lambda^{-1} r_\lambda \end{bmatrix}$$

$$D = S^{-1} \Lambda$$
(2)

$$S = diag(s), \Lambda = diag(\lambda)$$

- Loss of sparsity
 - $N_p = 1000, N = 48: 48048$ decision variables.
 - 48048² hessian matrix to factorize: about 17 GB.

Future plans

- Iterative methods and preconditioning
 - Identify iterative solvers for solving the newton step iteratively.
 - Identify good preconditioners.
 - Evaluate which of the solvers and preconditioners are suitable for GPU implementation.
- Create toolbox for solving optimization problems using GPUs
- Smart grid problems used as test case for toolbox.

