
Welcome to

May 23-27, 2011, Lyngby.

PhD School in
Scientific GPU Computing

Allan P. Engsig-Karup

Modern GPGPUs
• Highly scalable

• Massively parallel processing

• 100s of cores

• 1000s of threads

• Available (almost) everywhere
(fx mass produced commodity graphics cards)

• Cheap (affordable) <$500

• Programmable using standard languages
(since 2006)

• Can act as a co-processor to CPU, e.g.,
for off-loading computational intensive tasks from the CPU to GPU

Project

Project
• Independent work in groups of up to two

persons

• Individually hand in a small report which
document the work in sufficient detail to
both verify and reproduce the work
(pdf file + zipped code)

• Grade: Passed/Not Passed

• Credits: 5 ECTS points

• Deadline: Monday, June 13, 2011.

- Finding and exploiting concurrency
- Dependencies need to be identified and managed
- Overcome performance bottlenecks

- Overhead of parallel processing
- Load imbalance among processing units
- Inefficient data sharing patterns (communication)
- Saturation of critical resources, e.g. memory
 bandwidth might be critical over compute bandwidth

- Maximize resource utilization for high-performance

Challenges of parallel computing

Projects in 2010

Standard project

Motivation
• Scientific algorithms can typically be decomposed into

“standard” building stones.

• The gap between naive implementations and optimized
code can be significant.

• Standard libraries may alleviate this problem... if they
exist and are mature.

• Cross-platform portability of interest for decision makers
(e.g. CUDA vs. OpenCL issue).

• Tuning performance. Paying attention to algorithmic
parameters and performance, impact on resource
utilization(/saturation), choice of architecture and effort
put into implementation, etc.

Stencil computations
(nearest neighbor computations)

Final Project:

Flexible-order finite difference computations

Ph.D. Course 2010:

Scientific GPU Computing

This projects aims at familiarizing yourself with the parallel computing
using CUDA on a heterogenous CPU-GPU system by a practical implemen-
tation of finite difference approximations of derivatives of a function.

Consider the general formula for flexible-order finite difference approxi-
mations of the q’th derivative of a function f(x) in one space dimension

∂qf

∂xq
≈

β∑

n=−α

cnf(xi+n) (1)

where cn is finite difference coefficients which can be computed using the
supplied C function fdcoeffF.c and the function f(x) is evaluated at a
discrete grid xi = hi, i = 0, 1, ..., N − 1, with uniform spacing between grid
points of size h = 1

N−1
. α and β are integer values indicating the number

of points, respectively, to the left and right of the expansion point xi. Take
α = β for all interior points sufficiently far from the boundaries. Near the
domain boundaries at x0 and xN−1 the stencils will need to be off-centered.

• Familiarize yourself with the supplied sequential code for computing
approximations of the q’th derivative on the discrete grid with N spa-
tial points in one space dimension on a CPU.

• Do an analysis of how you can balance data-transfer and thread ex-
ecution to maximize throughput performance for a given number of
grid points N .

• Write a parallel version of the sequential code using the CUDA pro-
gramming model to investigate the potential for speeding up the com-
putations.

• Carry out performance tests to test and demonstrate how throughput
can be maximized for various sizes of stencils with rank r = α + β + 1
for sizes r = 3, 5, 7, For example, choose N = 640000 in your
tests. Reports timings (speedup), throughput (GFLOPS/s) and other
interesting performance indicators.

• If time permits, extend the parallel code to be able to compute the
same one-dimensional derivative approximation for each point on a
grid in two space dimensions (xi, yj) = (ih, jh), j = 0, 1, ..., N .

The answers should be given in a short report containing your analysis,
results and conclusions. The final code should be included in an appendix
and include sufficient comments to understand your program code.

Scientific Computing Section, DTU Informatics, Kgs.-Lyngby, Denmark.

Seemingly, a simple numerical problem...

Stencil computations
(nearest neighbor computations)

... how about performance?

Final Project:

Flexible-order finite difference computations

Ph.D. Course 2010:

Scientific GPU Computing

This projects aims at familiarizing yourself with the parallel computing
using CUDA on a heterogenous CPU-GPU system by a practical implemen-
tation of finite difference approximations of derivatives of a function.

Consider the general formula for flexible-order finite difference approxi-
mations of the q’th derivative of a function f(x) in one space dimension

∂qf

∂xq
≈

β∑

n=−α

cnf(xi+n) (1)

where cn is finite difference coefficients which can be computed using the
supplied C function fdcoeffF.c and the function f(x) is evaluated at a
discrete grid xi = hi, i = 0, 1, ..., N − 1, with uniform spacing between grid
points of size h = 1

N−1
. α and β are integer values indicating the number

of points, respectively, to the left and right of the expansion point xi. Take
α = β for all interior points sufficiently far from the boundaries. Near the
domain boundaries at x0 and xN−1 the stencils will need to be off-centered.

• Familiarize yourself with the supplied sequential code for computing
approximations of the q’th derivative on the discrete grid with N spa-
tial points in one space dimension on a CPU.

• Do an analysis of how you can balance data-transfer and thread ex-
ecution to maximize throughput performance for a given number of
grid points N .

• Write a parallel version of the sequential code using the CUDA pro-
gramming model to investigate the potential for speeding up the com-
putations.

• Carry out performance tests to test and demonstrate how throughput
can be maximized for various sizes of stencils with rank r = α + β + 1
for sizes r = 3, 5, 7, For example, choose N = 640000 in your
tests. Reports timings (speedup), throughput (GFLOPS/s) and other
interesting performance indicators.

• If time permits, extend the parallel code to be able to compute the
same one-dimensional derivative approximation for each point on a
grid in two space dimensions (xi, yj) = (ih, jh), j = 0, 1, ..., N .

The answers should be given in a short report containing your analysis,
results and conclusions. The final code should be included in an appendix
and include sufficient comments to understand your program code.

Scientific Computing Section, DTU Informatics, Kgs.-Lyngby, Denmark.

⇔ fx = Af

1 Introduction 1 Introduction

1 Introduction

This paper is my follow-up project to the PhD summer school in scientific comput-

ing, at the Technical University of Denmark, 2010. The purpose is to grant insight

and experience in CUDA programming by exploiting several aspects of the pro-

gramming model. Thus, it is not a specific goal to deliver the fastest/best solution,

but merely to investigate how to tune the CUDA kernels and the consequences of

doing so.

We want to implement a flexible-order finite difference method for the q’th deriva-

tive in both one and two dimensions. The one dimensional function f is approxi-

mated around xi like

∂qf

∂xq
≈

β�

n=−α

cnf(xi+n), (1)

where cn is a set of finite difference coefficients. The function f is evaluated at

a discrete grid with uniform spacing h. Each grid point satisfies xi = hi, i =
0, 1, ..., N − 1 and h = 1

N−1 . The function f is evaluated α times to the right side

of x and β times to the right. The elements between the two equals the rank of the

coefficient stencil, i.e. r = α + β + 1. In this paper we always assume that the

stencil is uniform, so that α = β. Near boundaries the stencil is shifted, so that all

r coefficients stay within the grid. Here is an illustrative example of how the sparse

matrix-vector would look for a three point stencil with r = 3, and a grid size of

N = 8





c00 c01 c02 0 0 0 0 0
c10 c11 c12 0 0 0 0 0
0 c10 c11 c12 0 0 0 0
0 0 c10 c11 c12 0 0 0
0 0 0 c10 c11 c12 0 0
0 0 0 0 c10 c11 c12 0
0 0 0 0 0 c10 c11 c12
0 0 0 0 0 c20 c21 c22









f(x0)
f(x1)
f(x2)
f(x3)
f(x4)
f(x5)
f(x6)
f(x7)





≈





f (q)(x0)
f (q)(x1)
f (q)(x2)
f (q)(x3)
f (q)(x4)
f (q)(x5)
f (q)(x6)
f (q)(x7)





.(2)

The coefficients are generated using the C function fdcoeffF as presented in

[3]. It is clear from (2), that when r � N the matrix is very sparse. Even most of

the elements in the matrix that are not zero, are copies. Thus, for minimal memory

consumption, there is no need to store more than the simple r×r coefficient matrix

in compact form as

c =




c11 c12 c13
c21 c22 c23
c31 c32 c33



 . (3)

1

Final Project:

Flexible-order finite difference computations

Ph.D. Course 2011:

Scientific GPU Computing

This project is concerned with both implementing and evaluating the performance of a
flexible-order finite difference kernel for execution on a heterogenous CPU-GPU hardware
system. The goal will be to try and maximize throughput performance of the kernel for
execution on GPU architectures. Implementation should be both in CUDA and OpenCL.

Consider the general formula for flexible-order finite difference approximations of the
q’th derivative of a function f(x) in one space dimension

∂qf

∂xq
≈

β∑

n=−α

cnf(xi+n)

where cn is finite difference coefficients which can be computed using the supplied C
function fdcoeffF.c and the function f(x) is evaluated at a discrete grid xi = hi, i =
0, 1, ..., N − 1, with uniform spacing between grid points of size h = 1

N−1
. α and β are

integer values indicating the number of points, respectively, to the left and right of the
expansion point xi. Take α = β for all interior points sufficiently far from the boundaries.
Near the domain boundaries at x0 and xN−1 the stencils will need to be off-centered.

• Familiarize yourself with the supplied sequential code for computing approximations
of the q’th derivative on the discrete grid with N spatial points in one space dimen-
sion on a CPU.

• Assess and describe the characteristics (fx. bandwidth, hardware limits, peak perfor-
mance, etc.) of the heterogenous CPU-GPU hardware you will use for this project.
Test correctness of output against output from the supplied CPU code version.

• Write a parallel GPU version of the sequential code using the CUDA programming
model to investigate the potential for speeding up the computations relative to the
CPU-only version.

• Carry out performance tests and try to maximize throughput for various sizes of
stencils with rank r = α+β+1 with ranks r = 3, 5, 7, ... while exploiting the memory
hierarchy of the architecture. Any incremental improvements should be reported
and documented (ranging from naive to most optimized GPU kernel). Include both
absolute and relative measures of performance (fx. timings, throughput, transfers,
etc.) and possibly other interesting performance indicators. [HINT: e.g. use the
compute profiler, occupancy calculator, etc.]

• Write a parallel GPU version of the sequential code using the OpenCL programming
model. Redo the tests you have done using the CUDA version for performance
comparison. Test the the codes on available GPU architectures.

• Compare the performance of your code with the performance of a software library
(e.g. use cusp-library). Discuss differences in performance.

The answers should be given in a short report in PDF file format containing your
analysis, results and conclusions. The final code should be supplied in source and included
in an appendix and include sufficient comments to understand your program code and
reproduce your results.

Scientific Computing Section, DTU Informatics, Kgs. Lyngby, Denmark.

Work steps

Work steps

Final Project:

Flexible-order finite difference computations

Ph.D. Course 2011:

Scientific GPU Computing

This project is concerned with both implementing and evaluating the performance of a
flexible-order finite difference kernel for execution on a heterogenous CPU-GPU hardware
system. The goal will be to try and maximize throughput performance of the kernel for
execution on GPU architectures. Implementation should be both in CUDA and OpenCL.

Consider the general formula for flexible-order finite difference approximations of the
q’th derivative of a function f(x) in one space dimension

∂qf

∂xq
≈

β∑

n=−α

cnf(xi+n)

where cn is finite difference coefficients which can be computed using the supplied C
function fdcoeffF.c and the function f(x) is evaluated at a discrete grid xi = hi, i =
0, 1, ..., N − 1, with uniform spacing between grid points of size h = 1

N−1
. α and β are

integer values indicating the number of points, respectively, to the left and right of the
expansion point xi. Take α = β for all interior points sufficiently far from the boundaries.
Near the domain boundaries at x0 and xN−1 the stencils will need to be off-centered.

• Familiarize yourself with the supplied sequential code for computing approximations
of the q’th derivative on the discrete grid with N spatial points in one space dimen-
sion on a CPU.

• Assess and describe the characteristics (fx. bandwidth, hardware limits, peak perfor-
mance, etc.) of the heterogenous CPU-GPU hardware you will use for this project.
Test correctness of output against output from the supplied CPU code version.

• Write a parallel GPU version of the sequential code using the CUDA programming
model to investigate the potential for speeding up the computations relative to the
CPU-only version.

• Carry out performance tests and try to maximize throughput for various sizes of
stencils with rank r = α+β+1 with ranks r = 3, 5, 7, ... while exploiting the memory
hierarchy of the architecture. Any incremental improvements should be reported
and documented (ranging from naive to most optimized GPU kernel). Include both
absolute and relative measures of performance (fx. timings, throughput, transfers,
etc.) and possibly other interesting performance indicators. [HINT: e.g. use the
compute profiler, occupancy calculator, etc.]

• Write a parallel GPU version of the sequential code using the OpenCL programming
model. Redo the tests you have done using the CUDA version for performance
comparison. Test the the codes on available GPU architectures.

• Compare the performance of your code with the performance of a software library
(e.g. use cusp-library). Discuss differences in performance.

The answers should be given in a short report in PDF file format containing your
analysis, results and conclusions. The final code should be supplied in source and included
in an appendix and include sufficient comments to understand your program code and
reproduce your results.

Scientific Computing Section, DTU Informatics, Kgs. Lyngby, Denmark.

Sparse matrix-vector products

"Efficient Sparse Matrix-Vector Multiplication on CUDA"

Nathan Bell and Michael Garland, in, "NVIDIA Technical

Report NVR-2008-004", December 2008 SpMV
Warning: Block-size hardcoded to 256 in library. Results above obtained a block size of 128.

A flexible, high-level interface library for sparse
linear algebra and graph computations using
CUDA. Routines for manipulating sparse
matrices and solving sparse linear systems.

1 2 3
0

2

4

6

8

10

G
Fl

op
s/

s

N=100000

DIA
ELL
CSR
COO
HYB

Self-defined project

Guidelines
• Requirements (equivalent to 1 week of full-time work)

• What challenge will be addressed? What is the
relevance of the problem? How is it relevant to state-
of-the-art?

• Port an algorithm to GPU architecture

• Assessment of correctness

• Performance analysis and optimization
(profiling, etc.)

• Programming model CUDA and OpenCL

• Write up small report
(prioritize quality over quantity)

Description

• Formulate on at most 1 page
(see standard project on the web)

Access to GPU
hardware?

• Laptops

• Workstations

• Clusters

