Welcome to

PhD School in
Scientific GPU Computing

Allan P. Engsig-Karup
May 23-27,201 1, Lyngby.

=]

a D
) OpencL nVIDIA @ RI E “ A

M M

I DTU Informatics

Modern GPGPUs

Highly scalable
Massively parallel processing
® 100s of cores

® 1000s of threads

Available (almost) everywhere
(fx mass produced commodity graphics cards)

Cheap (affordable.) <$500 \X\\\

Programmable using standard languages
(since 2006) Nz

Can act as a co-processor to CPU, e.g.,
for off-loading computational intensive tasks from the CPU to GPU

Learning Objectives

A student who has met the objectives of the course will be able to:

Write CUDA and/or OpenCL programs for GPUs.

Use CUDA numerics libraries (CUBLAS and CUFFT).

Parallelize dense and sparse linear algebra computations.

Solve scientific problems using the GPU.

Estimate accuracy vs. speedup of numeric algorithms running on GPUs.
Identify parallelism in a scientific computing problems.

Arrange threads for parallel execution.

Reduce global memory traffic in device code.

= Eval ility of parallel pr to a specific scientific problem.

> DTU
RICE 22 4,
D M M
| DT informatics “

Mathematic

Project

For the follow-up project (formally corresponding to roughly 1 week of fulltime work):
We suggest that you either pick a

= standard project (with files standardprojectfiles.zip) defined by us, or

= project of your own choice with a clear project scope and estimated time frame to be accepted by us.
This will make it possible for you to suggest and define a project closer to your own interests.

The deadline for handing in the follow-up project report is Monday 13 June 2011 (at noon)
unless you arranged otherwise with us. Submit your work by e-mail to Allan (apek (at)
imm.dtu.dk). If you choose to do a follow-up project different from the standard project, please let
us know before Wednesday 25 Maj.

Note that to complete the project access to a programmable GPU is required.

Project

® Independent work in groups of up to two
persons

® Individually hand in a small report which
document the work in sufficient detail to
both verify and reproduce the work
(pdf file + zipped code)

® Grade: Passed/Not Passed
® Credits: 5 ECTS points
® Deadline: Monday, June 13,201 1.

Challenges of parallel computing

- Finding and exploiting concurrency
- Dependencies need to be identified and managed
- Overcome performance bottlenecks
- Overhead of parallel processing
- Load imbalance among processing units
- Inefficient data sharing patterns (communication)
- Saturation of critical resources, e.g. memory
bandwidth might be critical over compute bandwidth
- Maximize resource utilization for high-performance

Projects in 2010

of di projects pleted as a part of the PhD School in 2010

Flexible-order finite difference computations

The Poisson problem

Implementation of the Lattice Boltzmann Method on GPU

Segmented line extraction

Large-scale primal SVM training in CUDA

Gaussian process regression using GPUs

Performing measurements for comparing 3D observations with a generative human model
Sparse matrix-vector techniques for finite difference operations using CUDA
Realtime-ish ray tracer in CUDA

Sparse octree computation on the GPU

CudaVox: a voxel terrain renderer

Implementing a feature detector in CUDA

k-means clustering on a GPU

Standard project

Motivation

e Scientific algorithms can typically be decomposed into
“standard” building stones.

® The gap between naive implementations and optimized
code can be significant.

e Standard libraries may alleviate this problem... if they
exist and are mature.

® Cross-platform portability of interest for decision makers
(e.g. CUDA vs. OpenClL issue).

® Tuning performance. Paying attention to algorithmic
parameters and performance, impact on resource
utilization(/saturation), choice of architecture and effort
put into implementation, etc.

Stencil computations

(nearest neighbor computations)

Consider the general formula for flexible-order finite difference approxi-
mations of the ¢’th derivative of a function f(z) in one space dimension
B
1f .
Pt ~ Z cnf(ZTign) (1)

n=—a

where ¢, is finite difference coefficients which can be computed using the
supplied C function fdcoeffF.c and the function f(z) is evaluated at a
discrete grid z; = hi, i = 0,1,..., N — 1, with uniform spacing between grid
points of size h = 7. « and (3 are integer values indicating the number
of points, respect to the left and right of the expansion point z;. Take
a = (3 for all interior points sufficiently far from the boundaries. Near the
domain boundaries at xg and xy_; the stencils will need to be off-centered.

Seemingly, a simple numerical problem...

Stencil computations

(nearest neighbor computations)

By 5
TLa Y afin) & f = AF

n=—a

o C1 c2 O 0 0 0 0 F(zo) 19 (o)
co 11 2 0 0 0 0 0 Fx) F@ (@)
0 co cp ci2 0 0 0 0 f(z2) 19 (25)
0 0 ¢ c1 c2 0 0 0 f(xs) N f('l)(:r,;;)
0 0 0 cpo ¢ 2 0 0 f(z4) = O (xy)
0 0 0 0 c¢o c1 c2 0 flxs) @ (2s5)
0 0 0 0 0 co c1 ci2 f(x6) FO ()
0 0 0 0 0 ¢y €21 co f(z7) 7@ (27)

.. how about performance?

Work steps

e Familiarize yourself with the supplied sequential code for computing approxima
of the ¢’th derivative on the discrete grid with N spatial points in one space di
sion on a CPU.

Assess and describe the characteristics (fx. bandwidth, hardware limits, peak pe
mance, etc.) of the heterogenous CPU-GPU hardware you will use for this prc
Test correctness of output against output from the supplied CPU code version

Write a parallel GPU version of the sequential code using the CUDA programi
model to investigate the potential for speeding up the computations relative tc
CPU-only version.

Work steps

e Carry out performance tests and try to maximize throughput for various size:
stencils with rank r = a+ 41 with ranks r = 3,5, 7, ... while exploiting the mem
hierarchy of the architecture. Any incremental improvements should be repor
and documented (ranging from naive to most optimized GPU kernel). Include b
absolute and relative measures of performance (fx. timings, throughput, transt
etc.) and possibly other interesting performance indicators. [HINT: e.g. use
compute profiler, occupancy calculator, etc.]

Write a parallel GPU version of the sequential code using the OpenCL programm
model. Redo the tests you have done using the CUDA version for performs
comparison. Test the the codes on available GPU architectures.

e Compare the performance of your code with the performance of a software libt
(e.g. use cusp-library). Discuss differences in performance.

Sparse Matrix-Vector Multiply

Heavily optimized sparse matrix-vector multiplication achieves

#CO0 MCSR (scaler) + CSR (vector) XHYB xPKT
250
x x %
200 < x
X X
v 150
= X
Q *
o x & x x x
S 100 x—% X
x x X
LR + ®m 4 3
50 . .
¥ £
s = = = 5, ® 5 " " *
0o - *® @ =
& & & SR N e P ST SN S P N §
FF T F T & T
& o &5 & & 9
S W8 @ ¢ &
& < & g©
< &
Matrix
Sparse Matrix-Vectol i on Throughput-Oriented Processors”,

Nathan Bell & Michael Garland, NVIDIA

Wednesday. May 25, 2011

Fermi Sparse Matrix-Vector

Sparse Matrix-Vector Multiplication (SpMV)

Gflops Single Precision Double Precision
~#-Tesla C2050 (ECC off)
—— =4=Tesla C2050 (ECC on)
Tesla C1060
~#~Intel Xeon 5550

25 1 -m-Tesla C2050 (ECC off)
~+=Tesla C2050 (ECC on) -~
Tesla C1060

Intel Xeon 5550 A\
AN
A

Preliminary data 7

Notice: the performance has improved only slightly Tesla->Fermi
Slide from: http://www.microway.com/pdfs/TeslaC2050-Fermi-Performance.pdf

Sparse matrix-vector products

N=100000
10 T T T

GFlops/s

[

o
Warning: Block-size hardcoded to 256 in library. Results above obtained a block size of 128.

“Efficient Sparse Matrix-Vector Multiplication on CUDA"
Nathan Bell and Michael Garland, in, "NVIDIA Technical s MV
Report NVR-2008-004", December 2008

Aflexible, high-level interface library for sparse.
linear algebra and graph computations using
CUDA. Routines for manipulating sparse
matrices and solving sparse linear systems.

Self-defined project

Guidelines

® Requirements (equivalent to | week of full-time work)

® What challenge will be addressed? What is the
relevance of the problem? How is it relevant to state-
of-the-art?

® Port an algorithm to GPU architecture
e Assessment of correctness

® Performance analysis and optimization
(profiling, etc.)

® Programming model CUDA and OpenCL

® Write up small report
(prioritize quality over quantity)

Description

® Formulate on at most | page
(see standard project on the web)

Access to GPU
hardware?

® Laptops
® Workstations

® Clusters

