GPU Lab 1

Part 1: GPU Fractals: warm up exercises

Make sure you can logon to the lab workstation and familiarize yourself with
the Visual Studio interface. If you have problems please raise your hand.

i

ii.

iii.

iv.

Compile and execute the GPU Mandelbrot example code in the HPC11/Mandelbrot
directory.

View the output mandelbrotGPU.png using a browser window.

Modify the main function to generate the fractal in a different part of the
complex plane.

Replace the recurrence relation in the

__global__ void mandelbrot2D

kernel function with one of your choosing

[HINT: see the wiki lhere for some interesting alternatives.]

Generate a cool looking fractal with your new recurrence relationship.
Show your image to one of the instructors.

See next page for Part 2

http://en.wikipedia.org/wiki/Mandelbrot_set

Part 2: GPU Matriz-matriz multiply

A core task in high performance computing is the evaluation of matrix-matrix
multiplication. We consider a restricted example: given two matrices

A € RMX 16

B c RIGXN

RMXN

then their matrix product is a matrix AB € with entries given by

k=15
(AB)ij = > AyBij
k=0

where 0 < ¢ < M is the row index and 0 < j < N is the column index of entries
in the product matrix. A simple, i.e. non-optimized, CPU implementation is
given in

MatrixMultiply/MatrixMultiply.c.

This implementation uses a row-major storage convention for the matrices, i.e.
the matrix is stored as one long vector with the column index running fastest.

Tasks:

i. Develop CUDA code that allocates memory on the GPU and copies the
entries of the matrices A and B from the CPU host to the GPU arrays.

ii. Decide how you will convert the MatrixMultiply function into a CUDA
kernel [think about how to design the thread grid for this specific problem.

iii. Implement the CUDA kernel you designed in ii..
iv. Add code that:

a. Allocates space for the result matrix AB .
b. Invokes the CUDA kernel .
c. Copies the result from the GPU AB array to the CPU host.

v. Test and debug your CUDA implementation MatrixMultiply. You should
compare the output of your CUDA matrix multiplication routine with the
output of the CPU version we have supplied.

vi. Instrument your code with a timer and estimate the number of gigaflops
per second it produces on the GPU and the memory bandwidth it achieves
in gigabytes per second. [Hint: for accurate results use stream events for
timing |.

