GPU Lab 2

Part 3: GPU Optimization: The purpose of this exercise is to experiment with
the optimization techniques discussed in the lecture today.

Starting with the naive implementation of matrix-matrix multiplication you
implemented in Part 2 of Lab 1, refactor your code to compute the product
in sub-blocks. i.e. given a two-dimensional grid of thread-blocks, then the
two-dimensional thread-block parameterized by (I, J) computes

k=15
(AB);; = Z A By
k=0

for DI<i<D(I+1), DJ<j<D(J+1),
where the thread-block size is D x D with D = 16.
Determine the impact of using the following techniques to improve efficiency:
a. Shared memory for the sub-blocks of A and B.
b. Padding the shared memory arrays to avoid bank conflicts.
c. Bind textures array handles to the A and B arrays.
d. Unroll the inner-loop [HINT: the loop iterates exactly 16 times].

e. Experiment with how many 16 x 16 sub-matrix multiplies each thread-
block performs.

f. Try different thread-block sizes, i.e. blocks of side D = 2,4, 8, 16.

Tabulate the floating point performance (GFLOP/s) and bandwidth (GB/s) for
each permutation that you try.




