
1

© NVIDIA Corporation 2009

HPC COMPUTING WITH

CUDA AND TESLA HARDWARE

Exercises

2

Exercise 0: Run a Simple Program

Log on to test system

Compile and run pre-written CUDA

program — deviceQuery

CUDA Device Query (Runtime API) version (CUDART static linking)

There are 2 devices supporting CUDA

Device 0: "Tesla C1060"

CUDA Capability Major revision number: 1

CUDA Capability Minor revision number: 3

Total amount of global memory: 4294705152 bytes

Number of multiprocessors: 30

Number of cores: 240

Total amount of constant memory: 65536 bytes

Total amount of shared memory per block: 16384 bytes

Total number of registers available per block: 16384

© NVIDIA Corporation 2009

Total number of registers available per block: 16384

Warp size: 32

Maximum number of threads per block: 512

Maximum sizes of each dimension of a block: 512 x 512 x 64

Maximum sizes of each dimension of a grid: 65535 x 65535 x 1

Maximum memory pitch: 262144 bytes

Texture alignment: 256 bytes

Clock rate: 1.44 GHz

Concurrent copy and execution: Yes

Run time limit on kernels: No

Integrated: No

Support host page-locked memory mapping: Yes

Compute mode: Exclusive (only

one host thread at a time can use this device)

3

Exercise 1: Move Data between Host and GPU

Start from the “cudaMallocAndMemcpy” template.

Part 1: Allocate memory for pointers d_a and d_b on the device.

Part 2: Copy h_a on the host to d_a on the device.

Part 3: Do a device to device copy from d_a to d_b.

© NVIDIA Corporation 2009

Part 3: Do a device to device copy from d_a to d_b.

Part 4: Copy d_b on the device back to h_a on the host.

Part 5: Free d_a and d_b on the host.

Bonus: Experiment with cudaMallocHost in place of malloc for

allocating h_a.

4

Exercise 2: Launching Kernels

Start from the “myFirstKernel” template.

Part1: Allocate device memory for the result of the kernel using

pointer d_a.

Part2: Configure and launch the kernel using a 1-D grid of 1-D

© NVIDIA Corporation 2009

Part2: Configure and launch the kernel using a 1-D grid of 1-D

thread blocks.

Part3: Have each thread set an element of d_a as follows:
idx = blockIdx.x*blockDim.x + threadIdx.x

d_a[idx] = 1000*blockIdx.x + threadIdx.x

Part4: Copy the result in d_a back to the host pointer h_a.

Part5: Verify that the result is correct.

5

Exercise 3: Reverse Array, Single Block

Given an input array {a0, a1, …, an-1} in pointer d_a, store the

reversed array {an-1, an-2, …, a0} in pointer d_b

Start from the “reverseArray_singleblock” template

Only one thread block launched, to reverse an array of size

© NVIDIA Corporation 2009

Only one thread block launched, to reverse an array of size

N = numThreads = 256 elements

Part 1 (of 1): All you have to do is implement the body of the

kernel “reverseArrayBlock()”

Each thread moves a single element to reversed position

Read input from d_a pointer

Store output in reversed location in d_b pointer

6

Exercise 4: Reverse Array, Multi-Block

Given an input array {a0, a1, …, an-1} in pointer d_a, store the

reversed array {an-1, an-2, …, a0} in pointer d_b

Start from the “reverseArray_multiblock” template

Multiple 256-thread blocks launched

© NVIDIA Corporation 2009

Multiple 256-thread blocks launched

To reverse an array of size N, N/256 blocks

Part 1: Compute the number of blocks to launch

Part 2: Implement the kernel reverseArrayBlock()

Note that now you must compute both

The reversed location within the block

The reversed offset to the start of the block

7

Exercise 5: Matrix Transpose

Access columns of a tile in shared memory to write

contiguous data to global memory

Requires __syncthreads() since threads write data read by

other threads

Pad shared memory array to avoid bank conflicts

© NVIDIA Corporation 2009

idata odata

tile

8

Exercise 5: Matrix Transpose

There are further optimisations: see the New Matrix Transpose

SDK example.

© NVIDIA Corporation 2009

